Non-linear magnetic perturbations during edge-localized modes in TCV dominated by low n mode components

被引:19
|
作者
Wenninger, R. P. [1 ]
Reimerdes, H. [2 ]
Sauter, O. [2 ]
Zohm, H. [3 ]
机构
[1] Univ Munich, Univ Sternwarte, Munich, Germany
[2] Ecole Polytech Fed Lausanne, CRPP, EURATOM Assoc, CH-1015 Lausanne, Switzerland
[3] Max Planck Inst Plasma Phys, EURATOM Assoc, Garching, Germany
关键词
D O I
10.1088/0029-5515/53/11/113004
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
Edge-localized modes (ELMs) are instabilities in the edge of tokamak plasmas in the high confinement regime (H-mode). Despite beneficial aspects of ELMs, in a future device the size of the energy loss per ELM must be controlled, in order to avoid intolerable divertor power flux densities. To proceed in understanding how the ELM size is determined and how ELM mitigation methods work it is necessary to characterize the non-linear evolution of ELMs. This publication presents a detailed analysis of the toroidal structure of dominant magnetic perturbations during type-I ELMs in TCV. These signatures of the instability can be observed most intensely in close temporal vicinity to the onset of enhanced D-alpha-radiation. In particular it is shown that dominant magnetic perturbations already have a rigid toroidal mode structure when they are detected with magnetic probes. This indicates that perturbations associated with this type of ELM at TCV cannot be observed in their linear phase. Furthermore it is demonstrated that the toroidal structure of dominant magnetic perturbations is most often dominated by the n = 1 component. This is in clear contrast to typical results of linear stability calculations, leading to the hypothesis that the dominant toroidal mode number from the linear to the non-linear phase has a transition from intermediate to low values. In general, the reported results show that non-linear coupling leads to a significant modification of the mode structure.
引用
下载
收藏
页数:8
相关论文
共 39 条
  • [1] Suppression of edge-localized modes by magnetic field perturbations
    Kleva, Robert G.
    Guzdar, Parvez N.
    PHYSICS OF PLASMAS, 2010, 17 (11)
  • [2] Non-linear magnetohydrodynamic simulations of pellet triggered edge-localized modes in JET
    Futatani, S.
    Pamela, S.
    Garzotti, L.
    Huijsmans, G. T. A.
    Hoelzi, M.
    Frigione, D.
    Lennholm, M.
    NUCLEAR FUSION, 2020, 60 (02)
  • [3] Turbulence characterization during the suppression of edge-localized modes by magnetic perturbations on ASDEX Upgrade
    Leuthold, N.
    Suttrop, W.
    Willensdorfer, M.
    Birkenmeier, G.
    Brida, D.
    Cavedon, M.
    Dunne, M.
    Conway, G. D.
    Fischer, R.
    Gil, L.
    Happel, T.
    Hennequin, P.
    Kappatou, A.
    Kirk, A.
    Manz, P.
    McDermott, R. M.
    Vicente, J.
    Zohm, H.
    NUCLEAR FUSION, 2023, 63 (04)
  • [4] Understanding edge-localized mode mitigation by resonant magnetic perturbations on MAST
    Kirk, A.
    Chapman, I. T.
    Liu, Yueqiang
    Cahyna, P.
    Denner, P.
    Fishpool, G.
    Ham, C. J.
    Harrison, J. R.
    Liang, Yunfeng
    Nardon, E.
    Saarelma, S.
    Scannell, R.
    Thornton, A. J.
    NUCLEAR FUSION, 2013, 53 (04)
  • [5] Non-linear MHD modelling of edge localized modes suppression by resonant magnetic perturbations in ITER
    Becoulet, M.
    Huijsmans, G. T. A.
    Passeron, C.
    Liu, Y. Q.
    Evans, T. E.
    Lao, L. L.
    Li, L.
    Loarte, A.
    Pinches, S. D.
    Polevoi, A.
    Hosokawa, M.
    Kim, S. K.
    Pamela, S. J. P.
    Futatani, S.
    NUCLEAR FUSION, 2022, 62 (06)
  • [6] Non-linear MHD modeling of edge localized mode cycles and mitigation by resonant magnetic perturbations
    Orain, Francois
    Becoulet, M.
    Morales, J.
    Huijsmans, G. T. A.
    Dif-Pradalier, G.
    Hoelzl, M.
    Garbet, X.
    Pamela, S.
    Nardon, E.
    Passeron, C.
    Latu, G.
    Fil, A.
    Cahyna, P.
    PLASMA PHYSICS AND CONTROLLED FUSION, 2015, 57 (01)
  • [7] Pellet fuelling with edge-localized modes controlled by external magnetic perturbations in MAST
    Valovic, M.
    Garzotti, L.
    Gurl, C.
    Kirk, A.
    Dunai, D.
    Field, A. R.
    Lupelli, I.
    Naylor, G.
    Thornton, A.
    NUCLEAR FUSION, 2015, 55 (01)
  • [8] Mitigation of large amplitude edge-localized modes by resonant magnetic perturbations on LHD
    Toi, K.
    Ohdachi, S.
    Suzuki, Y.
    Watanabe, F.
    Tanaka, K.
    Sakakibara, S.
    Ogawa, K.
    Isobe, M.
    Du, X. D.
    Akiyama, T.
    Goto, M.
    Ida, K.
    Masuzaki, S.
    Morisaki, T.
    Morita, S.
    Narihara, K.
    Narushima, Y.
    Tokuzawa, T.
    Yamada, I.
    Yasuhara, R.
    Yoshinuma, M.
    Kawahata, K.
    Yamada, H.
    NUCLEAR FUSION, 2014, 54 (03)
  • [9] Edge-Localized Mode Control and Transport Generated by Externally Applied Magnetic Perturbations
    Joseph, I.
    CONTRIBUTIONS TO PLASMA PHYSICS, 2012, 52 (5-6) : 326 - 347
  • [10] Effects of edge-localized electron cyclotron current drive on edge-localized mode suppression by resonant magnetic perturbations in DIII-D
    Hu, Q. M.
    Logan, N. C.
    Yu, Q.
    Bortolon, A.
    NUCLEAR FUSION, 2024, 64 (04)