Analytic regularity of Stokes flow on polygonal domains in countably weighted Sobolev spaces

被引:39
|
作者
Guo, BQ [1 ]
Schwab, C
机构
[1] Univ Manitoba, Dept Math, Winnipeg, MB R3T 2N2, Canada
[2] Swiss Fed Inst Technol, Seminar Angew Math, CH-8092 Zurich, Switzerland
关键词
regularity; weighted Sobolev spaces; countably normed spaces; corner singularity; non-homogeneous order;
D O I
10.1016/j.cam.2005.02.018
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We investigate the analytic regularity of the Stokes problem in a polygonal domain Omega subset of R(2) with straight sides and piecewise analytic data. We establish a shift theorem in weighted Sobolev spaces of arbitrary order with explicit control of the order-dependence of the constants. The shift-theorem in the framework of countably weighted Sobolev spaces implies in particular interior analyticity and Gevrey-type analytic regularity near the corners. (c) 2005 Elsevier B.V. All rights reserved.
引用
收藏
页码:487 / 519
页数:33
相关论文
共 50 条
  • [1] Weighted Sobolev spaces and regularity for polyhedral domains
    Ammann, Bernd
    Nistor, Victor
    COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2007, 196 (37-40) : 3650 - 3659
  • [2] Flow Representation of the Navier-Stokes Equations in Weighted Sobolev Spaces
    Sirisubtawee, Sekson
    Manitcharoen, Naowarat
    Saksurakan, Chukiat
    INTERNATIONAL JOURNAL OF ANALYSIS AND APPLICATIONS, 2025, 23
  • [3] Variable Exponent Sobolev Spaces and Regularity of Domains
    Gorka, Przemyslaw
    Karak, Nijjwal
    Pons, Daniel J.
    JOURNAL OF GEOMETRIC ANALYSIS, 2021, 31 (07) : 7304 - 7319
  • [4] Variable Exponent Sobolev Spaces and Regularity of Domains
    Przemysław Górka
    Nijjwal Karak
    Daniel J. Pons
    The Journal of Geometric Analysis, 2021, 31 : 7304 - 7319
  • [5] Stokes problem in Rn and weighted Sobolev spaces
    Alliot, F
    Amrouche, C
    COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 1997, 325 (12): : 1247 - 1252
  • [6] Nonstationary Stokes system in weighted Sobolev spaces
    Zajaczkowski, Wojciech M.
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2011, 34 (05) : 544 - 562
  • [7] Sobolev spaces on Lie manifolds and regularity for polyhedral domains
    Ammann, Bernd
    Ionescu, Alexandru D.
    Nistor, Victor
    DOCUMENTA MATHEMATICA, 2006, 11 : 161 - 206
  • [8] Weighted fractional Sobolev spaces as interpolation spaces in bounded domains
    Acosta, Gabriel
    Drelichman, Irene
    Duran, Ricardo G. G.
    MATHEMATISCHE NACHRICHTEN, 2023, 296 (09) : 4374 - 4385
  • [9] Singularities and regularity of stationary Stokes and Navier-Stokes equations on polygonal domains and their treatments
    Anjam, Yasir Nadeem
    AIMS MATHEMATICS, 2020, 5 (01): : 440 - 466
  • [10] WEAK SOLUTIONS OF THE STOKES PROBLEM IN WEIGHTED SOBOLEV SPACES
    SPECOVIUSNEUGEBAUER, M
    ACTA APPLICANDAE MATHEMATICAE, 1994, 37 (1-2) : 195 - 203