The present work consists of an archaeometric investigation concerning ceramic samples, mostly unpublished, of the III-I centuries b.C. They were found in connection with kilns of the city of Sevilla (Archbishop's Palace) and the countryside (Arrabal zone, Carmona). They are identified with evolved variations of Iron Age amphorae of Punic and Turdetanian tradition, or already Roman typologies. The main objectives of this research include their technological and compositional characterization as well as the comparison of the characteristics of each manufacture tradition. An assemblage of 13 samples has been studied through petrographic analysis of thin sections, chemical analysis (X-ray fluorescence) and mineralogical analysis (X-ray diffraction). The chemical results showed the silico-aluminous and calcitic character of the samples, with variable contents of iron oxide as well as other minor elements and traces. The statistical treatment of the data by multivariant analysis has differentiated 3 conglomerates and one sample as an outsider. The mineralogical analysis has identified 8 crystalline phases, several of them already present in the raw materials and others formed by thermal treatment. It is interesting to note the illite, identified as dehydroxylated phase, anorthite, diopside and gehlenite. The petrographical analysis has identified 3 different petro-groups, which are correlated by a compositional point of view with the original context of the samples. Thus, according to these results, it has been possible to distinguish the manufactures of Sevilla from the Roman shapes, the common ware and the imitation types of Carmona. It has been discussed the possible solid-state reactions which yielded the crystalline phases identified by X-ray diffraction, besides an estimation of firing temperatures between 820-850 degrees C in an oxidant atmosphere. Finally, the possible sources for the raw materials used in the fabrication of these amphorae have been proposed in the Guadalquivir River valley, considering their illitic-calcitic characteristics. (C) 2021 SECV. Published by Elsevier Espana, S.L.U.