VHDL Generator for A High Performance Convolutional Neural Network FPGA-Based Accelerator

被引:0
|
作者
Hamdan, Muhammad K. [1 ]
Rover, Diane T. [1 ]
机构
[1] Iowa State Univ Sci & Technol, Elect & Comp Engn Dept, Ames, IA 50011 USA
关键词
VHDL generator; CNNs; AlexNet; parallelism; reconfigurable; adaptability; pipeline; scalable; FPGA; COPROCESSOR;
D O I
暂无
中图分类号
TP3 [计算技术、计算机技术];
学科分类号
0812 ;
摘要
Convolutional Neural Network (CNN) has been proven as a highly accurate and effective algorithm that has been used in a variety of applications such as handwriting digit recognition, visual recognition, and image classification. As a matter of fact, state-of-the-art CNNs are computationally intensive; however, their parallel and modular nature make platforms like FPGAs well suited for the acceleration process. A typical CNN takes a very long development round on FPGAs, hence in this paper, we propose a tool which allows developers, through a configurable user-interface, to automatically generate VHDL code for their desired CNN model. The generated code or architecture is modular, massively parallel, reconfigurable, scalable, fully pipelined, and adaptive to different CNN models. We demonstrate the automatic VHDL generator and its adaptability by implementing a small-scale CNN model "LeNet" and a large-scale one "AlexNet". The parameters of small scale models are automatically hard-coded as constants (part of the programmable logic) to overcome the memory bottleneck issue. On a Xilinx Virtex-7 running at 200 MHz, the system is capable of processing up to 125k images/s of size 28x28 for LeNet and achieved a peak performance of 611.52 GOP/s and 414 FPS for AlexNet.
引用
下载
收藏
页数:6
相关论文
共 50 条
  • [1] An FPGA-based Accelerator Platform Implements for Convolutional Neural Network
    Meng, Xiao
    Yu, Lixin
    Qin, Zhiyong
    2019 THE 3RD INTERNATIONAL CONFERENCE ON HIGH PERFORMANCE COMPILATION, COMPUTING AND COMMUNICATIONS (HP3C 2019), 2019, : 25 - 28
  • [2] FPGA-based Convolutional Neural Network Accelerator design using High Level Synthesize
    Ghaffari, Sina
    Sharifian, Saeed
    2016 2ND INTERNATIONAL CONFERENCE OF SIGNAL PROCESSING AND INTELLIGENT SYSTEMS (ICSPIS), 2016, : 29 - 34
  • [3] A High Utilization FPGA-Based Accelerator for Variable-Scale Convolutional Neural Network
    Li, Xin
    Cai, Yujie
    Han, Jun
    Zeng, Xiaoyang
    2017 IEEE 12TH INTERNATIONAL CONFERENCE ON ASIC (ASICON), 2017, : 944 - 947
  • [4] FPGA-based Accelerator for Convolutional Neural Network Application in Mobile Robotics
    Mazzetto, Lucas F. R.
    Castanho, Jose E. C.
    2023 LATIN AMERICAN ROBOTICS SYMPOSIUM, LARS, 2023 BRAZILIAN SYMPOSIUM ON ROBOTICS, SBR, AND 2023 WORKSHOP ON ROBOTICS IN EDUCATION, WRE, 2023, : 433 - 438
  • [5] A FPGA-based Accelerator of Convolutional Neural Network for Face Feature Extraction
    Ding, Ru
    Su, Guangda
    Bai, Guoqiang
    Xu, Wei
    Su, Nan
    Wu, Xingjun
    2019 IEEE INTERNATIONAL CONFERENCE ON ELECTRON DEVICES AND SOLID-STATE CIRCUITS (EDSSC), 2019,
  • [6] FPGA-Based Unified Accelerator for Convolutional Neural Network and Vision Transformer
    Li T.
    Zhang F.
    Wang S.
    Cao W.
    Chen L.
    Dianzi Yu Xinxi Xuebao/Journal of Electronics and Information Technology, 2024, 46 (06): : 2663 - 2672
  • [7] FPGA-based Training Accelerator Utilizing Sparseness of Convolutional Neural Network
    Nakahara, Hiroki
    Sada, Youki
    Shimoda, Masayuki
    Sayama, Kouki
    Jinguji, Akira
    Sato, Shimpei
    2019 29TH INTERNATIONAL CONFERENCE ON FIELD-PROGRAMMABLE LOGIC AND APPLICATIONS (FPL), 2019, : 180 - 186
  • [8] An Efficient FPGA-Based Dilated and Transposed Convolutional Neural Network Accelerator
    Wu, Tsung-Hsi
    Shu, Chang
    Liu, Tsung-Te
    IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS I-REGULAR PAPERS, 2024, : 5178 - 5186
  • [9] Optimizing FPGA-Based Convolutional Neural Network Performance
    Kao, Chi-Chou
    JOURNAL OF CIRCUITS SYSTEMS AND COMPUTERS, 2023, 32 (15)
  • [10] Scalable FPGA-Based Convolutional Neural Network Accelerator for Embedded Systems
    Zhao, Jingyuan
    Yin, Zhendong
    Zhao, Yanlong
    Wu, Mingyang
    Xu, Mingdong
    2019 4TH INTERNATIONAL CONFERENCE ON COMPUTATIONAL INTELLIGENCE AND APPLICATIONS (ICCIA 2019), 2019, : 36 - 40