Wavefront prediction using artificial neural networks for open-loop adaptive optics

被引:31
|
作者
Liu, Xuewen [1 ]
Morris, Tim [1 ]
Saunter, Chris [1 ]
de Cos Juez, Francisco Javier [2 ]
Gonzalez-Gutierrez, Carlos [2 ]
Bardou, Lisa [1 ]
机构
[1] Univ Durham, Ctr Adv Instrumentat, Dept Phys, South Rd, Durham DH1 3LE, England
[2] Univ Oviedo, Univ Inst Space Sci & Technol Asturias, E-33004 Oviedo, Spain
基金
欧盟地平线“2020”;
关键词
atmospheric effects; instrumentation: adaptive optics; methods: numerical; CONTROL LAW; LQG CONTROL; VALIDATION;
D O I
10.1093/mnras/staa1558
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
Latency in the control loop of adaptive optics (AO) systems can severely limit performance. Under the frozen flow hypothesis linear predictive control techniques can overcome this; however, identification and tracking of relevant turbulent parameters (such as wind speeds) is required for such parametric techniques. This can complicate practical implementations and introduce stability issues when encountering variable conditions. Here, we present a non-linear wavefront predictor using a long short-term memory (LSTM) artificial neural network (ANN) that assumes no prior knowledge of the atmosphere and thus requires no user input. The ANN is designed to predict the open-loop wavefront slope measurements of a Shack-Hartmann wavefront sensor (SI I-WFS) one frame in advance to compensate for a single-frame delay in a simulated 7 x 7 single-conjugate adaptive optics system operating at 150 Hz. We describe how the training regime of the LSTM ANN affects prediction performance and show how the performance of the predictor varies under various guide star magnitudes. We show that the prediction remains stable when both wind speed and direction are varying. We then extend our approach to a more realistic two-frame latency system. AO system performance when using the LSTM predictor is enhanced for all simulated conditions with prediction errors within 19.9-40.0 nm RMS of a latency-free system operating under the same conditions compared to a bandwidth error of 78.3 +/- 4.4 nm RMS.
引用
收藏
页码:456 / 464
页数:9
相关论文
共 50 条
  • [1] Using artificial neural networks for open-loop tomography
    Osborn, James
    De Cos Juez, Francisco Javier
    Guzman, Dani
    Butterley, Timothy
    Myers, Richard
    Guesalaga, Andres
    Laine, Jesus
    OPTICS EXPRESS, 2012, 20 (03): : 2420 - 2434
  • [2] Enhancing Open-Loop Wavefront Prediction in Adaptive Optics through 2D-LSTM Neural Network Implementation
    Perez, Saul
    Buendia, Alejandro
    Gonzalez, Carlos
    Rodriguez, Javier
    Iglesias, Santiago
    Fernandez, Julia
    De Cos, Francisco Javier
    PHOTONICS, 2024, 11 (03)
  • [3] Zonal slope prediction for open-loop adaptive optics
    Liu, Chao
    Hu, Lifa
    Cao, Zhaoliang
    Mu, Quanquan
    Xuan, Li
    OPTICS LETTERS, 2011, 36 (22) : 4461 - 4463
  • [4] Open-Loop Slope Prediction in Adaptive Optics Based on Attention Mechanism
    Wang, Ning
    Zhu, Licheng
    Ge, Xinlan
    Gao, Zeyu
    Wang, Shuai
    Yang, Ping
    CHINESE JOURNAL OF LASERS-ZHONGGUO JIGUANG, 2024, 51 (06):
  • [5] Deformable mirrors for open-loop adaptive optics
    Kellerer, A.
    Vidal, F.
    Gendron, E.
    Hubert, Z.
    Perret, D.
    Rousset, G.
    ADAPTIVE OPTICS SYSTEMS III, 2012, 8447
  • [6] Modal prediction for open-loop liquid-crystal adaptive optics systems
    Liu Chao
    Hu Li-Fa
    Mu Quan-Quan
    Cao Zhao-Liang
    Hu Hong-Bin
    Zhang Xing-Yun
    Lu Yong-Jun
    Xuan Li
    ACTA PHYSICA SINICA, 2012, 61 (12)
  • [7] Deformable Mirror Controller for Open-Loop Adaptive Optics
    Guzman, Dani
    Guesalaga, Andres
    Myers, Richard
    Sharples, Ray
    Morris, Tim
    Basden, Alastair
    Saunter, Christopher
    Dipper, Nigel
    Young, Laura
    Rodriguez, Luis
    Reyes, Marcos
    Martin, Yolanda
    ADAPTIVE OPTICS SYSTEMS, PTS 1-3, 2008, 7015
  • [8] Transformer neural networks for closed-loop adaptive optics using nonmodulated pyramid wavefront sensors
    Weinberger, Camilo
    Tapia, Jorge
    Neichel, Benoit
    Vera, Esteban
    ASTRONOMY & ASTROPHYSICS, 2024, 687
  • [9] Transformer neural networks for closed-loop adaptive optics using nonmodulated pyramid wavefront sensors
    Weinberger, Camilo
    Tapia, Jorge
    Neichel, Benoît
    Vera, Esteban
    Astronomy and Astrophysics, 1600, 687
  • [10] Loopshaped wavefront control using open-loop reconstructors
    Lee, Lawton H.
    OPTICS EXPRESS, 2006, 14 (17): : 7477 - 7486