Existence and uniqueness results for nonlinear elliptic problems with a lower order term and measure datum

被引:14
|
作者
Betta, MF
Mercaldo, A
Murat, F
Porzio, MM
机构
[1] Univ Naples 2, Dipartimento Matemat, I-81100 Caserta, Italy
[2] Univ Naples Federico II, Dipartimento Matemat & Applicaz R Caccioppoli, I-80126 Naples, Italy
[3] Univ Paris 06, Lab Jacques Louis Lions, F-75252 Paris 05, France
[4] Univ Studi Sannio, Fac Sci Matemat Fis & Nat, I-82100 Benevento, Italy
关键词
D O I
10.1016/S1631-073X(02)02338-5
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this Note we consider a class of noncoercive nonlinear problems whose prototype is -Delta(p)u + b(x)\delu\(lambda) = mu in Omega, u = 0 on partial derivativeOmega where Q is a bounded open subset of R-N (N greater than or equal to 2), Delta(p) is the so called p-Laplace operator (1 < p < N) or a variant of it, g is a Radon measure with bounded variation on 2 or a function in L-1 (Omega), lambda greater than or equal to 0 and b belongs to the Lorentz space L-N,L-1 (Omega) or to the Lebesgue space L-infinity(Omega). We prove existence and uniqueness of renormalized solutions. To cite this article: M.F. Betta et al., C R. Acad. Sci. Paris, Ser. I 334 (2002) 757-762. (C) 2002 Academie des sciences/Editions scientifiques et medicales Elsevier SAS.
引用
收藏
页码:757 / 762
页数:6
相关论文
共 50 条