Prediction of compressive strength of concrete using neural networks

被引:0
|
作者
Al-Salloum, Yousef A. [1 ]
Shah, Abid A. [1 ]
Abbas, H. [1 ]
Alsayed, Saleh H. [1 ]
Almusallam, Tarek H. [1 ]
Al-Haddad, M. S. [1 ]
机构
[1] King Saud Univ, Dept Civil Engn, Specialty Unit Safety Struct, Riyadh 11421, Saudi Arabia
来源
COMPUTERS AND CONCRETE | 2012年 / 10卷 / 02期
关键词
compressive strength; concrete; neural network; regression models; SHEAR-STRENGTH; DESIGN;
D O I
暂无
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
This research deals with the prediction of compressive strength of normal and high strength concrete using neural networks. The compressive strength was modeled as a function of eight variables: quantities of cement, fine aggregate, coarse aggregate, micro-silica, water and super-plasticizer, maximum size of coarse aggregate, fineness modulus of fine aggregate. Two networks, one using raw variables and another using grouped dimensionless variables were constructed, trained and tested using available experimental data, covering a large range of concrete compressive strengths. The neural network models were compared with regression models. The neural networks based model gave high prediction accuracy and the results demonstrated that the use of neural networks in assessing compressive strength of concrete is both practical and beneficial. The performance of model using the grouped dimensionless variables is better than the prediction using raw variables.
引用
收藏
页码:197 / 217
页数:21
相关论文
共 50 条
  • [1] Prediction of compressive strength of concrete by neural networks
    Ni, HG
    Wang, JZ
    CEMENT AND CONCRETE RESEARCH, 2000, 30 (08) : 1245 - 1250
  • [2] Prediction of concrete compressive strength using evolved polynomial neural networks
    Hamid-Zadeh, N.
    Jamali, A.
    Nariman-Zadeh, N.
    Akbarzadeh, H.
    WSEAS Transactions on Systems, 2007, 6 (04): : 802 - 807
  • [3] Prediction of Geopolymer Concrete Compressive Strength Using Convolutional Neural Networks
    Ramujee, Kolli
    Sadula, Pooja
    Madhu, Golla
    Kautish, Sandeep
    Almazyad, Abdulaziz S.
    Xiong, Guojiang
    Mohamed, Ali Wagdy
    CMES-COMPUTER MODELING IN ENGINEERING & SCIENCES, 2024, 139 (02): : 1455 - 1486
  • [4] PREDICTION OF COMPRESSIVE STRENGTH OF RECYCLED AGGREGATE CONCRETE USING ARTIFICAL NEURAL NETWORKS
    Duan, Z. H.
    Kou, S. C.
    Poon, C. S.
    PROCEEDINGS OF THE FIRST INTERNATIONAL CONFERENCE ON SUSTAINABLE URBANIZATION (ICSU 2010), 2010, : 931 - 939
  • [5] Compressive strength prediction of environmentally friendly concrete using artificial neural networks
    Naderpour, Hosein
    Rafiean, Amir Hossein
    Fakharian, Pouyan
    JOURNAL OF BUILDING ENGINEERING, 2018, 16 : 213 - 219
  • [6] Prediction of compressive strength of recycled aggregate concrete using artificial neural networks
    Duan, Z. H.
    Kou, S. C.
    Poon, C. S.
    CONSTRUCTION AND BUILDING MATERIALS, 2013, 40 : 1200 - 1206
  • [7] Non-Destructive Prediction of Concrete Compressive Strength Using Neural Networks
    Khashman, Adnan
    Akpinar, Pinar
    INTERNATIONAL CONFERENCE ON COMPUTATIONAL SCIENCE (ICCS 2017), 2017, 108 : 2358 - 2362
  • [8] Compressive strength prediction of limestone filler concrete using artificial neural networks
    Ayat, Hocine
    Kellouche, Yasmina
    Ghrici, Mohamed
    Boukhatem, Bakhta
    ADVANCES IN COMPUTATIONAL DESIGN, 2018, 3 (03): : 289 - 302
  • [9] Prediction of concrete compressive strength through artificial neural networks
    Neira, Pablo
    Bennun, Leonardo
    Pradena, Mauricio
    Gomez, Jaime
    GRADEVINAR, 2020, 72 (07): : 585 - 592
  • [10] Prediction of Concrete Compressive Strength by Evolutionary Artificial Neural Networks
    Nikoo, Mehdi
    TorabianMoghadam, Farshid
    Sadowski, Lukasz
    ADVANCES IN MATERIALS SCIENCE AND ENGINEERING, 2015, 2015