Realising a quantum absorption refrigerator with an atom-cavity system

被引:65
|
作者
Mitchison, Mark T. [1 ,2 ]
Huber, Marcus [3 ,4 ]
Prior, Javier [5 ]
Woods, Mischa P. [6 ,7 ]
Plenio, Martin B. [8 ]
机构
[1] Imperial Coll London, Blackett Lab, Quantum Opt & Laser Sci Grp, London SW7 2BW, England
[2] Univ Oxford, Clarendon Lab, Parks Rd, Oxford OX1 3PU, England
[3] Univ Geneva, Appl Phys Grp, CH-1211 Geneva 4, Switzerland
[4] Univ Autonoma Barcelona, Dept Fis, E-08193 Bellaterra, Spain
[5] Univ Politecn Cartagena, Paseo Alfonso 8, Cartagena 30203, Spain
[6] UCL, Dept Phys & Astron, London WC1E 6BT, England
[7] Delft Univ Technol, QuTech, Lorentzweg 1, NL-2611 CJ Delft, Netherlands
[8] Inst Theoret Phys, Albert Einstein Allee 11, D-89069 Ulm, Germany
来源
QUANTUM SCIENCE AND TECHNOLOGY | 2016年 / 1卷 / 01期
基金
瑞士国家科学基金会; 英国工程与自然科学研究理事会;
关键词
cavity quantum electrodynamics; quantum absorption refrigerator; quantum thermodynamics; sideband cooling; SINGLE ATOMS;
D O I
10.1088/2058-9565/1/1/015001
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
An autonomous quantum thermal machine comprising a trapped atom or ion placed inside an optical cavity is proposed and analysed. Such a machine can operate as a heat engine whose working medium is the quantised atomic motion or as an absorption refrigerator that cools without any work input. Focusing on the refrigerator mode, we predict that it is possible with state-of-the-art technology to cool a trapped ion almost to its motional ground state using a thermal light source such as sunlight. We nonetheless find that a laser or a similar reference system is necessary to stabilise the cavity frequencies. Furthermore, we establish a direct and heretofore unacknowledged connection between the abstract theory of quantum absorption refrigerators and practical sideband cooling techniques. Wealso highlight and clarify some assumptions underlying several recent theoretical studies on self-contained quantum engines and refrigerators. Our work indicates that cavity quantum electrodynamics is a promising and versatile experimental platform for the study of autonomous thermal machines in the quantum domain.
引用
收藏
页数:18
相关论文
共 50 条
  • [1] Nonadiabatic holonomic quantum computation with atom-cavity system
    Xing, Tonghao
    Tong, Dianmin
    [J]. CHINESE SCIENCE BULLETIN-CHINESE, 2020, 65 (23): : 2499 - 2506
  • [2] Coherent perfect absorption in a weakly coupled atom-cavity system
    Xiong, Wei
    Chen, Jiaojiao
    Fang, Baolong
    Lam, Chi-Hang
    You, J. Q.
    [J]. PHYSICAL REVIEW A, 2020, 101 (06)
  • [3] Quantum interference control of perfect photon absorption in a three-level atom-cavity system
    Guo, Miaodi
    [J]. OPTICS EXPRESS, 2021, 29 (17) : 27653 - 27660
  • [4] Quasieigenstate Coalescence in an Atom-Cavity Quantum Composite
    Choi, Youngwoon
    Kang, Sungsam
    Lim, Sooin
    Kim, Wookrae
    Kim, Jung-Ryul
    Lee, Jai-Hyung
    An, Kyungwon
    [J]. PHYSICAL REVIEW LETTERS, 2010, 104 (15)
  • [5] Eigenmode Evolution in an Atom-Cavity System
    An, Kyungwon
    [J]. ICTON: 2009 11TH INTERNATIONAL CONFERENCE ON TRANSPARENT OPTICAL NETWORKS, VOLS 1 AND 2, 2009, : 835 - 835
  • [6] Quantum-nondemolition measurement of photon arrival using an atom-cavity system
    Kojima, Kunihiro
    Tomita, Akihisa
    [J]. PHYSICAL REVIEW A, 2007, 75 (03):
  • [7] Correlation Properties of Photons in Coherently Driven Atom-Cavity Quantum Electrodynamics System
    Zhou, Ying
    Zhu, Chengjie
    [J]. Guangxue Xuebao/Acta Optica Sinica, 2022, 42 (21):
  • [8] Time crystals in a shaken atom-cavity system
    Cosme, Jayson G.
    Skulte, Jim
    Mathey, Ludwig
    [J]. PHYSICAL REVIEW A, 2019, 100 (05)
  • [9] Generation of Fock state and quantum entanglement in a coupled ladder atom-cavity system
    Gong, SQ
    Feng, XL
    Xu, ZZ
    [J]. JOURNAL OF OPTICS B-QUANTUM AND SEMICLASSICAL OPTICS, 2003, 5 (01) : 52 - 55
  • [10] Many-atom-cavity QED system with homogeneous atom-cavity coupling
    Lee, Jongmin
    Vrijsen, Geert
    Teper, Igor
    Hosten, Onur
    Kasevich, Mark A.
    [J]. OPTICS LETTERS, 2014, 39 (13) : 4005 - 4008