Superior fast-charging capability of graphite anode via facile surface treatment for lithium-ion batteries

被引:85
|
作者
Kim, Jisu [1 ]
Jeghan, Shrine Maria Nithya [1 ]
Lee, Gibaek [1 ]
机构
[1] Yeungnam Univ, Adv Energy Mat Design Lab, Sch Chem Engn, Gyongsan 38541, South Korea
基金
新加坡国家研究基金会;
关键词
Graphite; Anode; Fast charging; Cycling stability; Lithium-ion battery; ACTIVATED CARBON; ELECTRODE; PERFORMANCE; CELLS; AREA;
D O I
10.1016/j.micromeso.2020.110325
中图分类号
O69 [应用化学];
学科分类号
081704 ;
摘要
Fast-charging lithium-ion batteries (LIBs) with high energy and power density are important for the electric vehicle (EV) industry. However, graphite anode materials with high conductivity and stability still face setbacks in achieving fast charging and reach its potential. To improve the fast-charging ability of graphite, pristine graphite (PG) were treated with acid/base media, which break the bulk graphite layers into thin expanded graphite layers. Specifically, KOH etching is an effective method as it creates pores on the surfaces, facilitating the movement of Li+ ions and as well as increasing the number of sites for Li+ ion intercalation in the graphite layers. The specific capacities of acid-treated graphite (AG) and KOH-etched graphite (KG) is > 300 mAh g(-1) at a current density of 100 mA g(-1), which is higher than PG. Interestingly, even at high current densities, AG and KG exhibit good retention capacity in cycling. Furthermore, after long term stability tests, KG displayed the best recovery capacity at fast charging (1000 mA g(-1)) and slow discharging (200 mA g(-1)) with the highest specific capacity of 250 Ah g(-1). In summary, the fast-charging ability in LIBs can be improved using surface modified graphite as the anode material.
引用
收藏
页数:9
相关论文
共 50 条
  • [1] Kinetic Limits of Graphite Anode for Fast-Charging Lithium-Ion Batteries
    Suting Weng
    Gaojing Yang
    Simeng Zhang
    Xiaozhi Liu
    Xiao Zhang
    Zepeng Liu
    Mengyan Cao
    Mehmet Nurullah Ateş
    Yejing Li
    Liquan Chen
    Zhaoxiang Wang
    Xuefeng Wang
    Nano-Micro Letters, 2023, 15
  • [2] Kinetic Limits of Graphite Anode for Fast-Charging Lithium-Ion Batteries
    Weng, Suting
    Yang, Gaojing
    Zhang, Simeng
    Liu, Xiaozhi
    Zhang, Xiao
    Liu, Zepeng
    Cao, Mengyan
    Ates, Mehmet Nurullah
    Li, Yejing
    Chen, Liquan
    Wang, Zhaoxiang
    Wang, Xuefeng
    NANO-MICRO LETTERS, 2023, 15 (01)
  • [3] Kinetic Limits of Graphite Anode for Fast-Charging Lithium-Ion Batteries
    Suting Weng
    Gaojing Yang
    Simeng Zhang
    Xiaozhi Liu
    Xiao Zhang
    Zepeng Liu
    Mengyan Cao
    Mehmet Nurullah Ate?
    Yejing Li
    Liquan Chen
    Zhaoxiang Wang
    Xuefeng Wang
    Nano-Micro Letters, 2023, 15 (11) : 526 - 537
  • [4] Fast-charging graphite anode for lithium-ion batteries: Fundamentals, strategies, and outlooks
    Yan, Xin
    Jiao, Jinying
    Ren, Jingke
    Luo, Wen
    Mai, Liqiang
    APPLIED PHYSICS LETTERS, 2024, 124 (04)
  • [5] Kinetic limits and enhancement of graphite anode for fast-charging lithium-ion batteries
    Zhong C.
    Weng S.
    Wang Z.
    Zhan C.
    Wang X.
    Nano Energy, 2023, 117
  • [6] Surface Decoration of TiC Nanocrystals onto the Graphite Anode Enables Fast-Charging Lithium-Ion Batteries
    Suh, Joo Hyeong
    Choi, Ilyoung
    Park, Sungmin
    Kim, Dong Ki
    Kim, Youngugk
    Park, Min-Sik
    ACS APPLIED MATERIALS & INTERFACES, 2024, 16 (07) : 8853 - 8862
  • [7] Amorphous Anode Materials for Fast-charging Lithium-ion Batteries
    Vishwanathan, Savithri
    Pandey, Harshit
    Ramakrishna Matte, H. S. S.
    CHEMISTRY-A EUROPEAN JOURNAL, 2024, 30 (22)
  • [8] Introducing Ionic Transport Islands in Graphite Anode towards Fast-Charging Lithium-Ion Batteries
    Yu, Honggang
    Zhang, Yidan
    Zhao, Fenggang
    Li, Zhen
    Huang, Yunhui
    JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2024, 171 (07)
  • [9] A disordered rock salt anode for fast-charging lithium-ion batteries
    Liu, Haodong
    Zhu, Zhuoying
    Yan, Qizhang
    Yu, Sicen
    He, Xin
    Chen, Yan
    Zhang, Rui
    Ma, Lu
    Liu, Tongchao
    Li, Matthew
    Lin, Ruoqian
    Chen, Yiming
    Li, Yejing
    Xing, Xing
    Choi, Yoonjung
    Gao, Lucy
    Cho, Helen Sung-yun
    An, Ke
    Feng, Jun
    Kostecki, Robert
    Amine, Khalil
    Wu, Tianpin
    Lu, Jun
    Xin, Huolin L.
    Ong, Shyue Ping
    Liu, Ping
    NATURE, 2020, 585 (7823) : 63 - +
  • [10] A disordered rock salt anode for fast-charging lithium-ion batteries
    Haodong Liu
    Zhuoying Zhu
    Qizhang Yan
    Sicen Yu
    Xin He
    Yan Chen
    Rui Zhang
    Lu Ma
    Tongchao Liu
    Matthew Li
    Ruoqian Lin
    Yiming Chen
    Yejing Li
    Xing Xing
    Yoonjung Choi
    Lucy Gao
    Helen Sung-yun Cho
    Ke An
    Jun Feng
    Robert Kostecki
    Khalil Amine
    Tianpin Wu
    Jun Lu
    Huolin L. Xin
    Shyue Ping Ong
    Ping Liu
    Nature, 2020, 585 : 63 - 67