Silver nanoparticles with an average size of similar to5 nm were deposited on the surface of preformed silica submicrospheres with the aid of power ultrasound. Ultrasound irradiation of a slurry of silica submicrospheres, silver nitrate, and ammonia in an aqueous medium for 90 min under an atmosphere of argon to hydrogen (95:5) yielded a silver-silica nanocomposite. By controlling the atmospheric and reaction conditions, we could achieve the deposition of metallic silver on the surface of the silica spheres. The resulting silver-deposited silica submicrosphere samples were characterized with X-ray diffraction, transmission electron microscopy, differential scanning calorimetry, energy-dispersive X-ray analysis, high-resolution transmission electron microscopy, high-resolution scanning electron microscopy, photoacoustic spectroscopy, and Fourier transform infrared, UV-visible, and X-ray photoelectron spectroscopy.