Conjugates of rational equivariant holomorphic maps of symmetric domains

被引:0
|
作者
Lee, MH [1 ]
机构
[1] Univ No Iowa, Dept Math, Cedar Falls, IA 50614 USA
来源
MONATSHEFTE FUR MATHEMATIK | 2004年 / 141卷 / 03期
关键词
Hermitian symmetric domains; equivariant holomorphic maps; locally symmetric spaces; Kuga fiber varieties;
D O I
10.1007/s00605-003-0196-1
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let tau: D --> D' be an equivariant holomorphic map of symmetric domains associated to a homomorphism rho: G --> G' of semisimple algebraic groups defined over Q. If Gamma subset of G(Q) and Gamma' subset of G'(G) are torsion-free arithmetic subgroups with rho(Gamma) subset of Gamma', the map tau induces a morphism phi: Gamma\D --> Gamma'\D' of arithmetic varieties and the rationality of tau is defined by using symmetries on D and D' as well as the commensurability groups of Gamma and Gamma'. An element sigma is an element of Aut(C) determines a conjugate equivariant holomorphic map tau(sigma) :D-sigma --> D-'sigma of tau which induces the conjugate morphism phi(sigma): (Gamma\D)(sigma) - -> (Gamma'\D)(sigma) of phi. We prove that tau(sigma) is rational if tau is rational.
引用
收藏
页码:187 / 196
页数:10
相关论文
共 50 条