Expected Euler Characteristic of Excursion Sets of Random Holomorphic Sections on Complex Manifolds

被引:4
|
作者
Sun, Jingzhou [1 ]
机构
[1] Johns Hopkins Univ, Dept Math, Baltimore, MD 21218 USA
关键词
excursion set; critical radius; SUPERSYMMETRIC VACUA; CRITICAL-POINTS; LINE BUNDLES; RANDOM ZEROS; ASYMPTOTICS; METRICS; THEOREM; FIELDS;
D O I
10.1512/iumj.2012.61.4672
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We prove a formula for the expected Euler characteristic of excursion sets of random sections of powers of an ample bundle (L, h), where h is a Hermitian metric, over a Kahler manifold (M, omega). We then prove that the critical radius of the Kodaira embedding Phi(N) : M -> CPn given by an orthonormal basis of H-0 (M, L-N) is bounded below when N -> infinity. This result also gives conditions about when the preceding formula is valid.
引用
收藏
页码:1157 / 1174
页数:18
相关论文
共 16 条