Decision strategies in evolutionary optimization

被引:0
|
作者
Takahashi, A [1 ]
Borisov, A [1 ]
机构
[1] Tech Univ Riga, Inst Informat Technol, LV-1658 Riga, Latvia
关键词
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
This paper describes a sequel of the previous experiments on real number genetic algorithm behavior [2], [3]. A particular example of multi-criteria optimization is discussed. The behavior of the two previously explored genetic algorithms is compared with a simple evolutionary algorithm. The main idea of the experiments is to stimulate the algorithm to find the Pareto set without measuring dominance and non-dominance. The implication of maxi-min decision method is affecting optimization so that the final solutions lay closer to the Pareto set than those obtained without any decision method. This theoretical concept is tested and analyzed graphically by picturing populations after a certain number of generations. The differences in the algorithm behavior and causes of such differences are explained.
引用
收藏
页码:345 / 356
页数:12
相关论文
共 50 条
  • [1] Investigation of decision strategies in evolutionary optimization
    Takahashi, A
    Borisov, A
    SEVENTH SCANDINAVIAN CONFERENCE ON ARTIFICIAL INTELLIGENCE, 2001, 66 : 123 - 132
  • [2] Evolutionary strategies of optimization
    Phys Rev E., 1-B pt B (1171):
  • [3] Evolutionary strategies of optimization
    Asselmeyer, T
    Ebeling, W
    Rose, H
    PHYSICAL REVIEW E, 1997, 56 (01): : 1171 - 1180
  • [4] Evolutionary optimization of trading strategies
    Faculty of Information Technology, University of Technology, GPO Box 123, Broadway, NSW 2007, Australia
    Front. Artif. Intell. Appl., 2008, 1 (11-24):
  • [5] Optimization of a fuzzy classification by evolutionary strategies
    Nasri, M
    El Hitmy, M
    Ouariachi, H
    Barboucha, M
    SIXTH INTERNATIONAL CONFERENCE ON QUALITY CONTROL BY ARTIFICIAL VISION, 2003, 5132 : 220 - 230
  • [6] Evolutionary Strategies for Advanced Array Optimization
    Oliveri, G.
    Rocca, P.
    Poli, L.
    Carlin, M.
    Bekele, E. T.
    De Matteis, A.
    Massa, A.
    2011 IEEE INTERNATIONAL SYMPOSIUM ON ANTENNAS AND PROPAGATION (APSURSI), 2011, : 2441 - 2444
  • [7] Optimization of filter structures by evolutionary strategies
    Hoppe, K.
    Giesa, F.
    Schaldach, G.
    Thommes, M.
    Pieloth, D.
    MATERIALS TODAY COMMUNICATIONS, 2024, 38
  • [8] Optimization of Unsupervised Classification by Evolutionary Strategies
    El Allaoui, A.
    Merzougui, M.
    Nasri, M.
    El Hitmy, M.
    Ouariachi, H.
    INTERNATIONAL JOURNAL OF COMPUTER SCIENCE AND NETWORK SECURITY, 2010, 10 (06): : 325 - 332
  • [9] Differential evolutionary strategies for global optimization
    Pan, Chang-Cheng
    Xu, Chen
    Li, Guo
    Shenzhen Daxue Xuebao (Ligong Ban)/Journal of Shenzhen University Science and Engineering, 2008, 25 (02): : 211 - 215
  • [10] Finding optimal decision scores by evolutionary strategies
    Paetz, J
    ARTIFICIAL INTELLIGENCE IN MEDICINE, 2004, 32 (02) : 85 - 95