LOCAL LIPSCHITZ CONTINUITY OF THE DIAMETRIC COMPLETION MAPPING

被引:0
|
作者
Moreno, J. P. [1 ]
Schneider, R. [2 ]
机构
[1] Univ Autonoma Madrid, Fac Ciencias, Dpto Matemat, E-28049 Madrid, Spain
[2] Univ Freiburg, Math Inst, D-79104 Freiburg, Germany
来源
HOUSTON JOURNAL OF MATHEMATICS | 2012年 / 38卷 / 04期
关键词
Constant width; diametrically maximal set; diametric completion mapping; Jung's constant; spherical hulls; CONSTANT WIDTH; SETS; SPACES; SELECTORS;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The diametric completion mapping associates with every closed bounded set C in a normed linear space the set gamma(C) of its completions, that is, of the diametrically complete sets containing C and having the same diameter. We prove local Lipschitz continuity of this set-valued mapping, with respect to two possible arguments: either as a function on the space of closed, bounded and convex sets, while the norm is fixed, or as a function on the space of equivalent norms, while the set C is fixed. In the first case, our result is valid in spaces with Jung constant less than 2, whereas the result in the second case is only proved for finite dimensional spaces. In this setting, we further show: (i) the maximal volume completion is a continuous selection for gamma if the space is strictly convex, (ii) gamma(C) is convex for all C if and only if the space has the property, studied by Eggleston, that every diametrically maximal set is of constant width.
引用
收藏
页码:1207 / 1223
页数:17
相关论文
共 50 条
  • [1] Lipschitz selections of the diametric completion mapping in Minkowski spaces
    Pedro Moreno, Jose
    Schneider, Rolf
    [J]. ADVANCES IN MATHEMATICS, 2013, 233 (01) : 248 - 267
  • [2] Local Lipschitz continuity of the stop operator
    Desch W.
    [J]. Applications of Mathematics, 1998, 43 (6) : 461 - 477
  • [3] LIPSCHITZ CONTINUITY OF AN APPROXIMATE SOLUTION MAPPING TO EQUILIBRIUM PROBLEMS
    Li, X. B.
    Li, S. J.
    Chen, C. R.
    [J]. TAIWANESE JOURNAL OF MATHEMATICS, 2012, 16 (03): : 1027 - 1040
  • [4] Local Lipschitz continuity of solutions to a problem in the calculus of variations
    Bousquet, Pierre
    Clarke, Francis
    [J]. JOURNAL OF DIFFERENTIAL EQUATIONS, 2007, 243 (02) : 489 - 503
  • [5] Local Lipschitz continuity for energy integrals with slow growth
    Eleuteri, Michela
    Marcellini, Paolo
    Mascolo, Elvira
    Perrotta, Stefania
    [J]. ANNALI DI MATEMATICA PURA ED APPLICATA, 2022, 201 (03) : 1005 - 1032
  • [6] A remark on the local lipschitz continuity of vector hysteresis operators
    Krejčí P.
    [J]. Applications of Mathematics, 2001, 46 (01) : 1 - 11
  • [7] Local Lipschitz continuity for energy integrals with slow growth
    Michela Eleuteri
    Paolo Marcellini
    Elvira Mascolo
    Stefania Perrotta
    [J]. Annali di Matematica Pura ed Applicata (1923 -), 2022, 201 : 1005 - 1032
  • [8] Local strong convexity and local Lipschitz continuity of the gradient of convex functions
    Goebel, R.
    Rockafellar, R. T.
    [J]. JOURNAL OF CONVEX ANALYSIS, 2008, 15 (02) : 263 - 270
  • [9] Lipschitz Continuity of the Solution Mapping of Symmetric Cone Complementarity Problems
    Miao, Xin-He
    Chen, Jein-Shan
    [J]. ABSTRACT AND APPLIED ANALYSIS, 2012,
  • [10] WHITNEY STRATIFICATIONS AND THE CONTINUITY OF LOCAL LIPSCHITZ-KILLING CURVATURES
    Nhan Nguyen
    Valette, Guillaume
    [J]. ANNALES DE L INSTITUT FOURIER, 2018, 68 (05) : 2253 - 2276