Potential of Purple Non-Sulfur Bacteria in Sustainably Enhancing the Agronomic and Physiological Performances of Rice

被引:13
|
作者
Sundar, Laurence Shiva [1 ,2 ]
Chao, Yun-Yang [3 ]
机构
[1] Natl Pingtung Univ Sci & Technol, Dept Trop Agr & Int Cooperat, 1 Shuefu Rd, Pingtung 912301, Taiwan
[2] Fiji Natl Univ, Coll Agr Fisheries & Forestry, Dept Crop Sci, Koronivia Campus,POB 1544, Nausori, Fiji
[3] Natl Pingtung Univ Sci & Technol, Dept Plant Ind, 1 Shuefu Rd, Pingtung 912301, Taiwan
来源
AGRONOMY-BASEL | 2022年 / 12卷 / 10期
关键词
carbon sequestration; climate change; heavy metals; photosynthetic bacteria; purple non-sulfur bacteria; sustainable agriculture; zero hunger; RHODOPSEUDOMONAS-PALUSTRIS STRAINS; ANTIOXIDANT ENZYME-ACTIVITY; ORYZA-SATIVA L; 5-AMINOLEVULINIC ACID; RHODOBACTER-CAPSULATUS; SYSTEMIC RESISTANCE; SEEDLING GROWTH; STRESS; ETHYLENE; INOCULATION;
D O I
10.3390/agronomy12102347
中图分类号
S3 [农学(农艺学)];
学科分类号
0901 ;
摘要
Cereal grains and tubers are among the highly consumed staple foods globally; however, due to unfavorable weather conditions and the competition for natural resources, the major staple cereal crops, such as rice, are under production threat. On the other hand, the overuse of chemical fertilizers and pesticides to increase crop yield is deteriorating the growing environment for plants and animals, including humans. As such, sustainable management practices are the key method that can be employed to increase crop production without harming the environment. Plant growth-promoting bacteria (PGPB), such as the purple non-sulfur bacteria (PNSB), have recently gained much attention in crop production due to their ability to accumulate higher-value compounds that are highly beneficial to crops. Some of the major benefits PNSB holds are that it can fix atmospheric nitrogen, solubilize phosphate, remediate heavy metals, suppress methane emissions from waterlogged paddy fields, and assist in carbon sequestration. These benefits allow PNSB to be an important bacterium for improving plant growth and yield much more sustainably while benefiting the environment. This review article discusses the beneficial effects of PNSB on rice crop plants through careful screening of previous work in this area. The review also identifies the research gaps and suggests future research pathways to make PNSB an important bacteria for sustainable rice crop production. The review paper aims for the United Nation's sustainable development goal number two, "Zero Hunger," target 2.4, indicator 2.4.1, "Proportion of agricultural area under productive and sustainable agriculture".
引用
收藏
页数:11
相关论文
共 50 条
  • [1] ACETATE METABOLISM IN PURPLE NON-SULFUR BACTERIA
    BLASCO, R
    CARDENAS, J
    CASTILLO, F
    FEMS MICROBIOLOGY LETTERS, 1989, 58 (2-3) : 129 - 132
  • [2] Purple non-sulfur bacteria for biotechnological applications
    Morrison, Hailee M.
    Bose, Arpita
    JOURNAL OF INDUSTRIAL MICROBIOLOGY & BIOTECHNOLOGY, 2025, 52
  • [3] OXIDATION OF THIOSULFATE BY PURPLE NON-SULFUR BACTERIA
    KEPPEN, OI
    PEDAN, LV
    RODOVA, NA
    MICROBIOLOGY, 1980, 49 (05) : 562 - 566
  • [4] MORPHOLOGICAL-DIFFERENTIATION IN NON-SULFUR PURPLE BACTERIA
    GORLENKO, VM
    KEPPEN, OI
    PUCHKOV, AN
    MICROBIOLOGY, 1976, 45 (05) : 705 - 710
  • [5] Biosynthesis of pinene in purple non-sulfur photosynthetic bacteria
    Wu, Xiaomin
    Ma, Guang
    Liu, Chuanyang
    Qiu, Xin-yuan
    Min, Lu
    Kuang, Jingyu
    Zhu, Lingyun
    MICROBIAL CELL FACTORIES, 2021, 20 (01)
  • [6] Biosynthesis of pinene in purple non-sulfur photosynthetic bacteria
    Xiaomin Wu
    Guang Ma
    Chuanyang Liu
    Xin-yuan Qiu
    Lu Min
    Jingyu Kuang
    Lingyun Zhu
    Microbial Cell Factories, 20
  • [7] Photosynthetic fuel cell using purple non-sulfur bacteria
    Satake, Yui
    Otani, Yukitoshi
    Maeda, Isamu
    2012 INTERNATIONAL SYMPOSIUM ON OPTOMECHATRONIC TECHNOLOGIES (ISOT), 2012,
  • [8] KINETIC STUDIES OF PIGMENT SYNTHESIS BY NON-SULFUR PURPLE BACTERIA
    COHENBAZIRE, G
    SISTROM, WR
    STANIER, RY
    JOURNAL OF CELLULAR AND COMPARATIVE PHYSIOLOGY, 1957, 49 (01): : 25 - 68
  • [9] ALCOHOL-DEHYDROGENASE ACTIVITY OF NON-SULFUR PURPLE BACTERIA
    KRASILNIKOVA, EN
    MICROBIOLOGY, 1975, 44 (05) : 716 - 720
  • [10] Modeling the electron transport chain of purple non-sulfur bacteria
    Klamt, Steffen
    Grammel, Hartmut
    Straube, Ronny
    Ghosh, Robin
    Gilles, Ernst Dieter
    MOLECULAR SYSTEMS BIOLOGY, 2008, 4 (1)