TiO2 Nanotip Arrays: Anodic Fabrication and Field-Emission Properties

被引:43
|
作者
Liang, Jia
Zhang, Gengmin [1 ]
机构
[1] Peking Univ, Key Lab Phys & Chem Nanodevices, Beijing 100871, Peoples R China
基金
中国国家自然科学基金;
关键词
TiO2; nanotip; field emission; anodization; X-ray photoelectron spectrum; annealing; NEUTRON-DIFFRACTION; ANATASE; NANOTUBES; TITANIUM; RAMAN; RUTILE; PHOTOLUMINESCENCE; OXIDATION;
D O I
10.1021/am301690f
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
In contrast to the main-stream strategy of growing convex nanostructures upward from the substrates and using them as cold electron sources, it is illustrated in this article that growing concave nanostructures downward into substrates also results in configurations suitable for field emission. Well-ordered TiO2 nanotube arrays were developed on the titanium foils in two-step anodizations. Simultaneously, arrays of sharp nanotips, which resembled the Spindt emitter arrays in appearance, also manifested themselves on the outmost surface of the foils. These nanotips were actually the remainder of the titanium foil surfaces that survived dissolution during anodization. Annealing transformed the amorphous TiO2 nanotips into anatase crystals and further to rutile. Despite the lack of an overall large aspect ratio, the sharpness of these nanotips guaranteed sufficiently strong electric fields for electron extraction. As a result, field emission was readily obtained from the TiO2 nanotip arrays, either before or after annealing. Photoelectron spectroscopy of the samples demonstrated that the majority of the emitted electrons came from local states in the band gap. Annealing at an appropriate temperature increased these local states and improved the field-emission capability of the samples.
引用
收藏
页码:6053 / 6061
页数:9
相关论文
共 50 条
  • [1] Field-emission properties of TiO2 nanowire arrays
    Xiang, B
    Zhang, Y
    Wang, Z
    Luo, XH
    Zhu, YW
    Zhang, HZ
    Yu, DP
    JOURNAL OF PHYSICS D-APPLIED PHYSICS, 2005, 38 (08) : 1152 - 1155
  • [2] Growth and field-emission property of tungsten oxide nanotip arrays
    Zhou, J
    Gong, L
    Deng, SZ
    Chen, J
    She, JC
    Xu, NS
    Yang, RS
    Wang, ZL
    APPLIED PHYSICS LETTERS, 2005, 87 (22) : 1 - 3
  • [3] Mechanical fabrication of carbon nanotube/TiO2 nanoparticle composite films and their field-emission properties
    He, Kai-Xuan
    Su, Juan
    Guo, Deng-Zhu
    Xing, Ying-Jie
    Zhang, Geng-Min
    PHYSICA STATUS SOLIDI A-APPLICATIONS AND MATERIALS SCIENCE, 2011, 208 (10): : 2388 - 2391
  • [4] Preparation and field emission properties of TiO2 nanotube arrays
    Guo, T. (gtl@fzu.edu.cn), 1600, Chinese Journal of Materials Research (27):
  • [5] Fabrication of a patterned TiO2 nanotube arrays in anodic oxidation
    Yang, Dae-Jin
    Park, Hun
    Kim, Ho-Gi
    Cho, Seong-Je
    Choi, Won-Youl
    JOURNAL OF ELECTROCERAMICS, 2009, 23 (2-4) : 159 - 163
  • [6] Fabrication of a patterned TiO2 nanotube arrays in anodic oxidation
    Dae-Jin Yang
    Hun Park
    Ho-Gi Kim
    Seong-Je Cho
    Won-Youl Choi
    Journal of Electroceramics, 2009, 23 : 159 - 163
  • [7] Structural Transformation, Photocatalytic, and Field-Emission Properties of Ridged TiO2 Nanotubes
    Xu, Xijin
    Tang, Chengchun
    Zeng, Haibo
    Zhai, Tianyou
    Zhang, Shanqing
    Zhao, Huijun
    Bando, Yoshio
    Golberg, Dmitri
    ACS APPLIED MATERIALS & INTERFACES, 2011, 3 (04) : 1352 - 1358
  • [8] Fabrication of TaS2 nanobelt arrays and their enhanced field-emission
    Wu, Xing-Cai
    Tao, You-Rong
    Gao, Qi-Xiu
    CHEMICAL COMMUNICATIONS, 2009, (40) : 6008 - 6010
  • [9] Field-Emission Characteristics of Molded Molybdenum Nanotip Arrays With Stacked Collimation Gate Electrodes
    Tsujino, Soichiro
    Helfenstein, Patrick
    Kirk, Eugenie
    Vogel, Thomas
    Escher, Conrad
    Fink, Hans-Werner
    IEEE ELECTRON DEVICE LETTERS, 2010, 31 (09) : 1059 - 1061
  • [10] Fabrication and photoelectrochemical properties of TIO2 nanotube arrays
    Li, Yunlin
    Li, Lili
    Yang, Zhiguang
    CHIMICA OGGI-CHEMISTRY TODAY, 2016, 34 (6B) : 8 - 12