A Smoothing Inexact Newton Method for Generalized Nonlinear Complementarity Problem

被引:1
|
作者
Li, Meixia [1 ,2 ]
Che, Haitao [2 ]
机构
[1] Weifang Univ, Sch Math & Informat Sci, Weifang 261061, Shandong, Peoples R China
[2] Beijing Univ Technol, Coll Appl Sci, Beijing 100022, Peoples R China
关键词
EQUIVALENCE;
D O I
10.1155/2012/401835
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Based on the smoothing function of penalized Fischer-Burmeister NCP-function, we propose a new smoothing inexact Newton algorithm with non-monotone line search for solving the generalized nonlinear complementarity problem. We view the smoothing parameter as an independent variable. Under suitable conditions, we show that any accumulation point of the generated sequence is a solution of the generalized nonlinear complementarity problem. We also establish the local superlinear (quadratic) convergence of the proposed algorithm under the BD-regular assumption. Preliminary numerical experiments indicate the feasibility and efficiency of the proposed algorithm.
引用
收藏
页数:17
相关论文
共 50 条
  • [1] A New Smoothing Inexact Newton Method for Generalized Nonlinear Complementarity Problem
    Su, Ke
    Lu, Xiaoli
    2013 SIXTH INTERNATIONAL CONFERENCE ON BUSINESS INTELLIGENCE AND FINANCIAL ENGINEERING (BIFE), 2014, : 633 - 637
  • [2] Nonmonotone smoothing inexact newton method for the nonlinear complementarity problem
    Liu R.
    Dong L.
    Liu, Ruijuan (ruijuanliu83@163.com), 1600, Springer Verlag (51): : 659 - 674
  • [3] A smoothing inexact Newton method for nonlinear complementarity problems
    Rui, Shao-Ping
    Xu, Cheng-Xian
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2010, 233 (09) : 2332 - 2338
  • [4] A smoothing inexact Newton method for P0 nonlinear complementarity problem
    Haitao Che
    Yiju Wang
    Meixia Li
    Frontiers of Mathematics in China, 2012, 7 : 1043 - 1058
  • [5] A smoothing inexact Newton method for P0 nonlinear complementarity problem
    Che, Haitao
    Wang, Yiju
    Li, Meixia
    FRONTIERS OF MATHEMATICS IN CHINA, 2012, 7 (06) : 1043 - 1058
  • [6] A smoothing Newton-type method for generalized nonlinear complementarity problem
    Zhang, Xinzhen
    Jiang, Hefeng
    Wang, Yiju
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2008, 212 (01) : 75 - 85
  • [7] A REGULARIZED INEXACT SMOOTHING NEWTON METHOD FOR CIRCULAR CONE COMPLEMENTARITY PROBLEM
    Chi, Xiaoni
    Tao, Jiyuan
    Zhu, Zhibin
    Duan, Fujian
    PACIFIC JOURNAL OF OPTIMIZATION, 2017, 13 (02): : 197 - 218
  • [8] A generalized smoothing Newton method for the symmetric cone complementarity problem
    Li, Yuan-Min
    Wei, Deyun
    APPLIED MATHEMATICS AND COMPUTATION, 2015, 264 : 335 - 345
  • [9] A regularization smoothing Newton method for solving nonlinear complementarity problem
    Chen, Xiaohong
    Ma, Changfeng
    NONLINEAR ANALYSIS-REAL WORLD APPLICATIONS, 2009, 10 (03) : 1702 - 1711
  • [10] One-step smoothing inexact Newton method for nonlinear complementarity problem with a P0 function
    Wu, Caiying
    Zhao, Yue
    BULLETIN OF THE BELGIAN MATHEMATICAL SOCIETY-SIMON STEVIN, 2012, 19 (02) : 277 - 287