Thermodynamics, geometrothermodynamics and critical behavior of (2+1)-dimensional black holes

被引:32
|
作者
Han, YiWen [1 ]
Chen, Gang [1 ]
机构
[1] Chongqing Technol & Business Univ, Coll Comp Sci, Chongqing 400067, Peoples R China
关键词
Black hole; Legendre invariance; Curvature scalar; Phase transition; GEOMETRY; GRAVITY;
D O I
10.1016/j.physletb.2012.06.068
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
In this Letter, we study the properties of the (2 + 1)-dimensional black holes from the viewpoint of geometrothermodynamics. We show that the Legendre invariant metric of the (2 + 1)-dimensional black holes can produce correctly the behavior of the thermodynamic interaction and phase transition structure of the corresponding black hole configurations. We find that they are both curved and the curvature scalar gives the information about the phase transition point. (C) 2012 Elsevier B.V. All rights reserved.
引用
收藏
页码:127 / 130
页数:4
相关论文
共 50 条
  • [1] Critical behavior in (2+1)-dimensional black holes
    Cai, RG
    Lu, ZJ
    Zhang, YZ
    [J]. PHYSICAL REVIEW D, 1997, 55 (02): : 853 - 860
  • [2] THERMODYNAMICS OF 2+1 BLACK-HOLES
    ZASLAVSKII, OB
    [J]. CLASSICAL AND QUANTUM GRAVITY, 1994, 11 (02) : L33 - L38
  • [3] Geometrothermodynamics of higher dimensional black holes
    Alessandro Bravetti
    Davood Momeni
    Ratbay Myrzakulov
    Hernando Quevedo
    [J]. General Relativity and Gravitation, 2013, 45 : 1603 - 1617
  • [4] Geometrothermodynamics of higher dimensional black holes
    Bravetti, Alessandro
    Momeni, Davood
    Myrzakulov, Ratbay
    Quevedo, Hernando
    [J]. GENERAL RELATIVITY AND GRAVITATION, 2013, 45 (08) : 1603 - 1617
  • [5] Thermodynamics of (2+1)-dimensional black holes in Einstein-Maxwell-dilaton gravity
    Dehghani, M.
    [J]. PHYSICAL REVIEW D, 2017, 96 (04)
  • [6] Thermodynamics of (2+1)-dimensional charged black holes with power-law Maxwell field
    Dehghani, M.
    [J]. PHYSICAL REVIEW D, 2016, 94 (10)
  • [7] SUPERSYMMETRY OF THE (2+1)-DIMENSIONAL BLACK-HOLES
    COUSSAERT, O
    HENNEAUX, M
    [J]. PHYSICAL REVIEW LETTERS, 1994, 72 (02) : 183 - 186
  • [8] Higher dimensional flat embeddings of (2+1)-dimensional black holes
    Hong, ST
    Kim, YW
    Park, YJ
    [J]. PHYSICAL REVIEW D, 2000, 62 (02): : 1 - 6
  • [9] Stability of the event horizon in (2+1)-dimensional black holes
    Wang, B
    Su, RK
    Yu, PKN
    Young, ECM
    [J]. PHYSICAL REVIEW D, 1996, 54 (12) : 7298 - 7302
  • [10] (2+1)-dimensional black holes in f (R,φ) gravity
    Karakasis, Thanasis
    Papantonopoulos, Eleftherios
    Tang, Zi-Yu
    Wang, Bin
    [J]. PHYSICAL REVIEW D, 2022, 105 (04)