Thom's conjecture on triangulations of maps

被引:8
|
作者
Shiota, M [1 ]
机构
[1] Nagoya Univ, Grad Sch Polymath, Nagoya, Aichi 46401, Japan
关键词
D O I
10.1016/S0040-9383(99)00022-1
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
[No abstract available]
引用
收藏
页码:383 / 399
页数:17
相关论文
共 50 条
  • [1] The symplectic Thom conjecture
    Ozsváth, P
    Szabó, Z
    [J]. ANNALS OF MATHEMATICS, 2000, 151 (01) : 93 - 124
  • [2] THOM’S GRADIENT CONJECTURE FOR NONLINEAR EVOLUTION EQUATIONS
    Choi, Beomjun
    Hung, Pei-Ken
    [J]. arXiv,
  • [3] Triangulations and the Hajos conjecture
    Mohar, B
    [J]. ELECTRONIC JOURNAL OF COMBINATORICS, 2005, 12 (01):
  • [4] Triangulations and the Hajos Conjecture
    Rodl, Vojtech
    Zich, Jan
    [J]. JOURNAL OF GRAPH THEORY, 2008, 59 (04) : 293 - 325
  • [5] On Tuza's Conjecture for Triangulations and Graphs with Small Treewidth
    Botler, F.
    Fernandes, C. G.
    Gutierrez, J.
    [J]. ELECTRONIC NOTES IN THEORETICAL COMPUTER SCIENCE, 2019, 346 : 171 - 183
  • [6] On Tuza's conjecture for triangulations and graphs with small treewidth
    Botler, Fabio
    Fernandes, Cristina G.
    Gutierrez, Juan
    [J]. DISCRETE MATHEMATICS, 2021, 344 (04)
  • [7] Thom’s Jet Transversality Theorem for Regular Maps
    Yuta Kusakabe
    [J]. The Journal of Geometric Analysis, 2021, 31 : 6031 - 6041
  • [8] Thom's Jet Transversality Theorem for Regular Maps
    Kusakabe, Yuta
    [J]. JOURNAL OF GEOMETRIC ANALYSIS, 2021, 31 (06) : 6031 - 6041
  • [10] On the first integral conjecture of Rene Thom
    Cresson, Jacky
    Daniilidis, Aris
    Shiota, Masahiro
    [J]. BULLETIN DES SCIENCES MATHEMATIQUES, 2008, 132 (07): : 625 - 631