EQUIVARIANT HILBERT SERIES OF MONOMIAL ORBITS

被引:7
|
作者
Gunturkun, Sema [1 ]
Nagel, Uwe [2 ]
机构
[1] Univ Michigan, Dept Math, 530 Church St,East Hall, Ann Arbor, MI 48109 USA
[2] Univ Kentucky, Dept Math, 715 Patterson Off Tower, Lexington, KY 40506 USA
关键词
Hilbert function; polynomial ring; monoid; invariant ideal; Krull dimension; degree; multiplicity; POLYNOMIAL-RINGS;
D O I
10.1090/proc/13943
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The equivariant Hilbert series of an ideal generated by an orbit of a monomial under the action of the monoid Inc(N) of strictly increasing functions is determined. This is used to find the dimension and degree of such an ideal. The result also suggests that the description of the denominator of an equivariant Hilbert series of an arbitrary Inc(N)-invariant ideal as given by Nagel and Romer is rather efficient.
引用
收藏
页码:2381 / 2393
页数:13
相关论文
共 50 条
  • [1] Equivariant Hilbert series
    Himstedt, Frank
    Symonds, Peter
    [J]. ALGEBRA & NUMBER THEORY, 2009, 3 (04) : 423 - 443
  • [2] On the Hilbert series of monomial ideals
    Goodarzi, Afshin
    [J]. JOURNAL OF COMBINATORIAL THEORY SERIES A, 2013, 120 (02) : 315 - 317
  • [3] RATIONALITY OF EQUIVARIANT HILBERT SERIES AND ASYMPTOTIC PROPERTIES
    Nagel, Uwe
    [J]. TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2021, 374 (10) : 7313 - 7357
  • [4] Monomial right ideals and the Hilbert series of noncommutative modules
    La Scala, Roberto
    [J]. JOURNAL OF SYMBOLIC COMPUTATION, 2017, 80 : 403 - 415
  • [5] Hilbert series for equivariant mappings restricted to invariant hyperplanes
    Stewart, I
    Dias, APS
    [J]. JOURNAL OF PURE AND APPLIED ALGEBRA, 2000, 151 (01) : 89 - 106
  • [6] The equivariant Hilbert series of the canonical ring of Fermat curves
    Charalambous, Hara
    Karagiannis, Kostas
    Karanikolopoulos, Sotiris
    Kontogeorgis, Aristides
    [J]. INDAGATIONES MATHEMATICAE-NEW SERIES, 2022, 33 (05): : 1071 - 1101
  • [7] ON GENERATING SERIES OF CLASSES OF EQUIVARIANT HILBERT SCHEMES OF FAT POINTS
    Gusein-Zade, S. M.
    Luengo, I.
    Melle-Hernandez, A.
    [J]. MOSCOW MATHEMATICAL JOURNAL, 2010, 10 (03) : 593 - 602
  • [8] Equivariant Hilbert series in non-noetherian polynomial rings
    Nagel, Uwe
    Roemer, Tim
    [J]. JOURNAL OF ALGEBRA, 2017, 486 : 204 - 245
  • [9] UNIVERSAL FORMULA FOR THE HILBERT SERIES OF MINIMAL NILPOTENT ORBITS
    Matsuo, A.
    Veselov, A. P.
    [J]. PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2017, 145 (12) : 5123 - 5130
  • [10] Computational Aspects of Equivariant Hilbert Series of Canonical Rings for Algebraic Curves
    Charalambous, Hara
    Karagiannis, Kostas
    Karanikolopoulos, Sotiris
    Kontogeorgis, Aristides
    [J]. COMPUTER ALGEBRA IN SCIENTIFIC COMPUTING (CASC 2022), 2022, 13366 : 83 - 102