MULTI-POINT GREEN'S FUNCTIONS FOR SLE AND AN ESTIMATE OF BEFFARA

被引:24
|
作者
Lawler, Gregory F. [1 ]
Werness, Brent M. [1 ]
机构
[1] Univ Chicago, Dept Math, Chicago, IL 60637 USA
来源
ANNALS OF PROBABILITY | 2013年 / 41卷 / 3A期
基金
美国国家科学基金会;
关键词
UNIFORM SPANNING-TREES; ERASED RANDOM-WALKS; CONFORMAL-INVARIANCE; SCALING LIMITS;
D O I
10.1214/11-AOP695
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
In this paper we define and prove of the existence of the multi-point Green's function for SLE a normalized limit of the probability that an SLE kappa curve passes near to a pair of marked points in the interior of a domain. When kappa <8 this probability is nontrivial, and an expression can be written in terms two-sided radial SLE. One of the main components to our proof is a refinement of a bound first provided by Beffara [Ann. Probab. 36 (2008) 14211452]. This work contains a proof of this bound independent from the original.
引用
收藏
页码:1513 / 1555
页数:43
相关论文
共 50 条