Lehmer's Interesting Series

被引:4
|
作者
Dyson, Freeman J. [1 ]
Frankel, Norman E. [2 ,3 ]
Glasser, M. Lawrence [4 ]
机构
[1] Inst Adv Study, Princeton, NJ 08540 USA
[2] Univ Melbourne, Dept Phys, Melbourne, Vic 3010, Australia
[3] Univ Melbourne, Fac Phys, Melbourne, Vic 3010, Australia
[4] Clarkson Univ, Dept Phys, Potsdam, NY USA
来源
AMERICAN MATHEMATICAL MONTHLY | 2013年 / 120卷 / 02期
关键词
D O I
10.4169/amer.math.monthly.120.02.116
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The series S-k(z) =Sigma(infinity)(n=1) [C-m(2m)](-1)m(k)z(m) is evaluated in a nonrecursive and closed process. It can be analytically continued beyond its domain of convergence vertical bar z vertical bar < 4 when k = 0, 1, 2, .... From this we provide a firm basis for Lehmer's observation that g emerges from the limiting behavior of S-k(2) as k -> infinity.
引用
收藏
页码:116 / 130
页数:15
相关论文
共 50 条
  • [1] Applications of Lehmer's Infinite Series Involving Reciprocals of the Central Binomial Coefficients
    Kumar, B. R. Srivatsa
    Kilicman, Adem
    Rathie, Arjun K.
    JOURNAL OF FUNCTION SPACES, 2022, 2022
  • [2] POINCARE-SERIES AND AN EXTENSION OF THE LEHMER CONJECTURE
    KUZNETSOV, NV
    RUSSIAN MATHEMATICAL SURVEYS, 1985, 40 (04) : 203 - 204
  • [3] Solution to Lehmer's problem
    Landau, E
    AMERICAN JOURNAL OF MATHEMATICS, 1909, 31 : 86 - +
  • [4] NOTES ON AN INTERESTING SERIES
    Beals, Richard
    Ergun, Nurettin
    COMPTES RENDUS DE L ACADEMIE BULGARE DES SCIENCES, 2020, 73 (10): : 1340 - 1348
  • [5] Congruences and Lehmer's problem
    Bonciocat, Nicolae Ciprian
    INTERNATIONAL JOURNAL OF NUMBER THEORY, 2008, 4 (04) : 587 - 596
  • [6] HEDGEHOGS IN LEHMER'S PROBLEM
    Van Ittersum, Jan-Willem M.
    Ringeling, Berend
    Zudilin, Wadim
    BULLETIN OF THE AUSTRALIAN MATHEMATICAL SOCIETY, 2022, 105 (02) : 236 - 242
  • [7] The tale of the allergist's life: A series of interesting case reports
    Slavin, Raymond G.
    ALLERGY AND ASTHMA PROCEEDINGS, 2008, 29 (04) : 417 - 420
  • [8] A variant of Lehmer's conjecture
    Murty, V. Kumar
    JOURNAL OF NUMBER THEORY, 2007, 123 (01) : 80 - 91
  • [9] On the Golomb's conjecture and Lehmer's numbers
    Wang Tingting
    Wang Xiaonan
    OPEN MATHEMATICS, 2017, 15 : 1003 - 1009
  • [10] Lehmer's problem for arbitrary groups
    Lueck, W.
    JOURNAL OF TOPOLOGY AND ANALYSIS, 2022, 14 (04) : 901 - 932