The use of chitosan/Fe3O4 grafted graphene oxide for effective adsorption of rifampicin from water samples

被引:43
|
作者
Shafaati, Mahsa [1 ]
Miralinaghi, Mahsasadat [2 ]
Shirazi, Reza Haji Seyed Mohammad [1 ]
Moniri, Elham [2 ]
机构
[1] Islamic Azad Univ, Dept Nat Resources & Environm, Sci & Res Branch, Tehran, Iran
[2] Islamic Azad Univ, Dept Chem, Fac Sci, Varamin Pishva Branch, Varamin, Iran
关键词
Antibiotics removal; Magnetic adsorbent; Water purification; Chitosan; AQUEOUS-SOLUTION; MAGNETIC CHITOSAN; EFFICIENT REMOVAL; PB(II); CIPROFLOXACIN; NANOCOMPOSITE; NANOPARTICLES; DEGRADATION; PERFORMANCE; COMPOSITES;
D O I
10.1007/s11164-020-04259-9
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
The environmental pollution caused by the introduction of antibiotics into the water resources poses serious threats to aquatic organisms and human health due to their toxicity and lasting harmful effects. In this research, the magnetized nanoparticles coated by chitosan (CS/Fe3O4) were grafted with graphene oxide (GO) to develop a biopolymer composite and study its efficiency for the removal of rifampicin (RIF), a semisynthetic antibiotic, from aqueous solution. The physiochemical properties of the GO/CS/Fe3O4 nanocomposite were characterized using the FTIR, XRD, FE-SEM, EDS, VSM, TGA, and BET analyses. The impacts of experimental parameters including the medium pH, contact time, adsorbent dosage, temperature, initial RIF concentration, and ionic strength on the adsorption efficiency were further investigated through batch experiments. The results indicated that in a solution with an initial RIF concentration of 20 mg L(-1)and a pH value of 5 at a temperature of 328 K, RIF removal efficiency was achieved higher than 95% using 10 mg of the GO/CS/Fe3O4 composite for a contact time of 75 min. The adsorption kinetics and isotherm were assessed using different models. The maximum adsorption capacity (q(max)) of the GO/CS/Fe3O4 was found to be 102.11 mg g(-1). Thermodynamic studies demonstrated the endothermic and spontaneous nature of the RIF adsorption. The high removal efficiency (over 70%) after seven successive adsorption-desorption cycles with the GO/CS/Fe3O4 showed the satisfactory regeneration performance of the adsorbent. Overall, the results of this study confirmed the capability of the GO/CS/Fe3O4 in enhanced removing RIF from aqueous media for environmental remediation applications.
引用
收藏
页码:5231 / 5254
页数:24
相关论文
共 50 条
  • [1] The use of chitosan/Fe3O4 grafted graphene oxide for effective adsorption of rifampicin from water samples
    Mahsa Shafaati
    Mahsasadat Miralinaghi
    Reza Haji Seyed Mohammad Shirazi
    Elham Moniri
    Research on Chemical Intermediates, 2020, 46 : 5231 - 5254
  • [2] Preparition and multiple-dye adsorption of magnetic chitosan/Fe3O4/graphene oxide adsorbent
    Gao Ming
    Zhang Tong-Qing
    Li Jian-Jun
    Hu Jia-Qi
    Jin Ming-Yan
    Zhao Yan
    Wang Hong-Yang
    Xue Chang-Guo
    CHINESE JOURNAL OF INORGANIC CHEMISTRY, 2023, 39 (04) : 723 - 734
  • [3] Enhanced hydrogen adsorption by Fe3O4–graphene oxide materials
    Seyyed Ershad Moradi
    Applied Physics A, 2015, 119 : 179 - 184
  • [4] Adsorption of Arsenic on Graphene Oxide, Reduced Graphene Oxide, and their Fe3O4 Doped Nanocomposites
    Sengupta, Sudip
    Pari, Arnab
    Biswas, Labani
    Shit, Pradip
    Bhattacharyya, Kallol
    Chattopadhyay, Asoke P.
    BIOINTERFACE RESEARCH IN APPLIED CHEMISTRY, 2022, 12 (05): : 6196 - 6210
  • [5] Chitosan grafted SiO2–Fe3O4 nanoparticles for removal of antibiotics from water
    Selen Tuğba Danalıoğlu
    Özge Kerkez Kuyumcu
    Mohamed Abdel Salam
    Şahika Sena Bayazit
    Environmental Science and Pollution Research, 2018, 25 : 36661 - 36670
  • [6] Adsorption mechanism of magnetically separable Fe3O4/graphene oxide hybrids
    Ouyang, Ke
    Zhu, Chuanhe
    Zhao, Ya
    Wang, Leichao
    Xie, Shan
    Wang, Qun
    APPLIED SURFACE SCIENCE, 2015, 355 : 562 - 569
  • [7] ADSORPTION OF CIPROFLOXACIN FROM AQUEOUS SOLUTION ONTO FE3O4/GRAPHENE OXIDE NANOCOMPOSITE
    Balarak, Davoud
    Zafariyan, Mohadeseh
    Chandrika, Kethineni
    INTERNATIONAL JOURNAL OF PHARMACEUTICAL SCIENCES AND RESEARCH, 2020, 11 (01): : 268 - 274
  • [8] Fe3O4/Graphene Oxide Composite for Adsorption of Methylene Blue and Methyl Orange in Water Treatment
    Khajeh, M.
    Barkhordar, A.
    JOURNAL OF APPLIED SPECTROSCOPY, 2020, 87 (04) : 701 - 707
  • [9] Fe3O4/Graphene Oxide Composite for Adsorption of Methylene Blue and Methyl Orange in Water Treatment
    M. Khajeh
    A. Barkhordar
    Journal of Applied Spectroscopy, 2020, 87 : 701 - 707
  • [10] Fe3O4/Graphene Oxide/Chitosan Nanocomposite: A Smart Nanosorbent for Lead(II) Ion Removal from Contaminated Water
    Vo, Linh Quang
    Vu, Anh-Tuan
    Le, Thu Dieu
    Huynh, Chinh Dang
    Tran, Hoang Vinh
    ACS OMEGA, 2024,