BEHAVIORS OF φ-EXPONENTIAL DISTRIBUTIONS IN WASSERSTEIN GEOMETRY AND AN EVOLUTION EQUATION

被引:3
|
作者
Takatsu, Asuka [1 ,2 ]
机构
[1] Nagoya Univ, Grad Sch Math, Nagoya, Aichi 4648602, Japan
[2] Inst Hautes Etud Sci, F-91440 Bures Sur Yvette, France
关键词
phi-exponential distribution; q-Gaussian measure; Wasserstein geometry; evolution equation;
D O I
10.1137/110849304
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A phi-exponential distribution is a generalization of an exponential distribution associated to functions phi in an appropriate class, and the space of phi-exponential distributions has a dually flat structure. We study features of the space of phi-exponential distributions, such as the convexity in Wasserstein geometry and the stability under an evolution equation. From this study, we provide the new characterizations to the space of Gaussian measures and the space of q-Gaussian measures.
引用
收藏
页码:2546 / 2556
页数:11
相关论文
共 50 条
  • [1] Wasserstein geometry of porous medium equation
    Takatsu, Asuka
    ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 2012, 29 (02): : 217 - 232
  • [2] Wasserstein gradients for the temporal evolution of probability distributions
    Chen, Yaqing
    Mueller, Hans-Georg
    ELECTRONIC JOURNAL OF STATISTICS, 2021, 15 (02): : 4061 - 4084
  • [3] STOCHASTIC EQUATION AND EXPONENTIAL ERGODICITY IN WASSERSTEIN DISTANCES FOR AFFINE PROCESSES
    Friesen, Martin
    Jin, Peng
    Rudiger, Barbara
    ANNALS OF APPLIED PROBABILITY, 2020, 30 (05): : 2165 - 2195
  • [4] Wasserstein Exponential Kernels
    De Plaen, Henri
    Fanuel, Michael
    Suykens, Johan A. K.
    2020 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), 2020,
  • [5] Geometry of q-Exponential Family of Probability Distributions
    Amari, Shun-ichi
    Ohara, Atsumi
    ENTROPY, 2011, 13 (06): : 1170 - 1185
  • [6] Geometry of distributions and F-Gordon equation
    Mehdi Nadjafikhah
    Reza Aghayan
    Mathematical Sciences, 2012, 6 (1)
  • [7] Geometry of distributions and F-Gordon equation
    Nadjafikhan, Mehdi
    Aghayan, Reza
    MATHEMATICAL SCIENCES, 2012, 6 (01)
  • [8] THE EXPONENTIAL FORMULA FOR THE WASSERSTEIN METRIC
    Craig, Katy
    ESAIM-CONTROL OPTIMISATION AND CALCULUS OF VARIATIONS, 2016, 22 (01) : 169 - 187
  • [9] Limit behaviors for ratios of order statistics from exponential distributions
    Xu, Shoufang
    Mei, Changlin
    COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 2021, 50 (24) : 5918 - 5928
  • [10] On weak solutions for an evolution equation with exponential nonlinearities
    Ma, TF
    Soriano, JA
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 1999, 37 (08) : 1029 - 1038