Stieltjes functions and discrete classical orthogonal polynomials

被引:0
|
作者
Bracciali, Cleonice F. [1 ]
Perez, Teresa E. [2 ]
Pinar, Miguel A. [2 ]
机构
[1] Univ Estadual Paulista, UNESP, Dept Matemat Aplicada, BR-15054000 Sao Jose Do Rio Preto, SP, Brazil
[2] Univ Granada, Dept Matemat Aplicada, Granada 18071, Spain
来源
COMPUTATIONAL & APPLIED MATHEMATICS | 2013年 / 32卷 / 03期
基金
巴西圣保罗研究基金会;
关键词
Difference equations; Stieltjes functions; Classical orthogonal polynomials of a discrete variable;
D O I
10.1007/s40314-013-0035-5
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Classical orthogonal polynomials can be characterized in terms of the corresponding Stieltjes function. We consider the construction of a Stieltjes function in terms of the falling factorials for discrete classical orthogonal polynomials (Charlier, Krawtchouk, Meixner, and Hahn). This Stieltjes function associated with classical orthogonal polynomials of a discrete variable is solution of a non-homogeneous difference equation. That property characterizes the discrete classical measures. In addition, an hypergeometric expression for the Stieltjes function is obtained in all the discrete classical cases.
引用
收藏
页码:537 / 547
页数:11
相关论文
共 50 条
  • [1] Stieltjes functions and discrete classical orthogonal polynomials
    Cleonice F. Bracciali
    Teresa E. Pérez
    Miguel A. Piñar
    Computational and Applied Mathematics, 2013, 32 : 537 - 547
  • [2] Stieltjes' theorem for classical discrete orthogonal polynomials
    Castillo, K.
    Rafaeli, F. R.
    Suzuki, A.
    JOURNAL OF MATHEMATICAL PHYSICS, 2020, 61 (10)
  • [3] Discrete classical orthogonal polynomials
    Kwon, KH
    Lee, DW
    Park, SB
    Yoo, BH
    JOURNAL OF DIFFERENCE EQUATIONS AND APPLICATIONS, 1998, 4 (02) : 145 - 162
  • [4] Discrete classical orthogonal polynomials and interferometry
    Perinová, V
    Luks, A
    COMMUNICATIONS IN DIFFERENCE EQUATIONS, 2000, : 311 - 325
  • [5] GENERATING FUNCTIONS OF CAUCHY-STIELTJES TYPE FOR ORTHOGONAL POLYNOMIALS
    Bozejko, Marek
    Demni, Nizar
    INFINITE DIMENSIONAL ANALYSIS QUANTUM PROBABILITY AND RELATED TOPICS, 2009, 12 (01) : 91 - 98
  • [6] Classical symmetric orthogonal polynomials of a discrete variable
    Area, I
    Godoy, E
    Ronveaux, A
    Zarzo, A
    INTEGRAL TRANSFORMS AND SPECIAL FUNCTIONS, 2004, 15 (01) : 1 - 12
  • [7] Discrete semi-classical orthogonal polynomials
    Marcellán, F
    Salto, L
    JOURNAL OF DIFFERENCE EQUATIONS AND APPLICATIONS, 1998, 4 (05) : 463 - 496
  • [8] ZEROS OF CLASSICAL ORTHOGONAL POLYNOMIALS OF A DISCRETE VARIABLE
    Area, Ivan
    Dimitrov, Dimitar K.
    Godoy, Eduardo
    Paschoa, Vanessa G.
    MATHEMATICS OF COMPUTATION, 2013, 82 (282) : 1069 - 1095
  • [9] New characterizations of discrete classical orthogonal polynomials
    Kwon, KH
    Lee, DW
    Park, SB
    JOURNAL OF APPROXIMATION THEORY, 1997, 89 (02) : 156 - 171
  • [10] A DISTRIBUTIONAL STUDY OF DISCRETE CLASSICAL ORTHOGONAL POLYNOMIALS
    GARCIA, AG
    MARCELLAN, F
    SALTO, L
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 1995, 57 (1-2) : 147 - 162