The effects of microbial fuel cell integration into constructed wetland on the performance of constructed wetland

被引:150
|
作者
Srivastava, Pratiksha [1 ]
Yadav, Asheesh Kumar [1 ]
Mishra, Barada Kanta [1 ]
机构
[1] CSIR Inst Minerals & Mat Technol, Bhubaneswar 751013, Orissa, India
关键词
Microbial fuel cell; Constructed wetland; Open circuit; Closed circuit; COD removal; WASTE-WATER TREATMENT; AZO-DYE; ELECTRICITY PRODUCTION; REMOVAL; SYSTEM;
D O I
10.1016/j.biortech.2015.05.072
中图分类号
S2 [农业工程];
学科分类号
0828 ;
摘要
The present work is the first detailed study, which is about the performance of CW after MFC integration with it. The experiments were run in open and closed circuit mode for assessment purpose. The findings of this study indicate towards a more practical application of MFC in wastewater treatment along with electricity production. The closed circuit operations of CW-MFCs have performed 12-20% better than open circuit operation and 27-49% better than Normal-CW for chemical oxygen demand (COD) removal. The maximum power density of 320.8 mW/m(3) and current density of 422.2 mA/m(3) have been achieved in granular graphite anode and Pt coated carbon cloth cathode based CW-MFC. (C) 2015 Elsevier Ltd. All rights reserved.
引用
收藏
页码:223 / 230
页数:8
相关论文
共 50 条
  • [1] The salinity effects on the performance of a constructed wetland-microbial fuel cell
    Villasenor Camacho, J.
    Rodriguez Romero, L.
    Fernandez Marchante, C. M.
    Fernandez Morales, F. J.
    Rodrigo Rodrigo, M. A.
    ECOLOGICAL ENGINEERING, 2017, 107 : 1 - 7
  • [2] Assessing the factors influencing the performance of constructed wetland-microbial fuel cell integration
    Huang, Jingyu
    Miwornunyuie, Nicholas
    Ewusi-Mensah, David
    Koomson, Desmond Ato
    WATER SCIENCE AND TECHNOLOGY, 2020, 81 (04) : 631 - 643
  • [3] Effects of electrode gap and wastewater condition on the performance of microbial fuel cell coupled constructed wetland
    Fang, Zhou
    Cheng, Sichao
    Cao, Xian
    Wang, Hui
    Li, Xianning
    ENVIRONMENTAL TECHNOLOGY, 2017, 38 (08) : 1051 - 1060
  • [4] The effects of electrode spacing and flow direction on the performance of microbial fuel cell-constructed wetland
    Doherty, Liam
    Zhao, Xiaohong
    Zhao, Yaqian
    Wang, Wenke
    ECOLOGICAL ENGINEERING, 2015, 79 : 8 - 14
  • [5] A taxonomy of design factors in constructed wetland-microbial fuel cell performance: A review
    Ebrahimi, Atieh
    Sivakumar, Muttucumaru
    McLauchlan, Craig
    JOURNAL OF ENVIRONMENTAL MANAGEMENT, 2021, 291
  • [6] Constructed wetland performance and potential for microbial removal
    Galvao, A.
    Matos, J.
    Silva, M.
    Ferreira, F.
    DESALINATION AND WATER TREATMENT, 2009, 4 (1-3) : 76 - 84
  • [7] Research progress of microbial fuel cell and constructed wetland coupling system
    Shi, Yucui
    Yang, Xiaoyu
    Ning, Xiaofen
    Yang, Qi
    2018 FIRST INTERNATIONAL CONFERENCE ON ENVIRONMENT PREVENTION AND POLLUTION CONTROL TECHNOLOGY (EPPCT 2018), 2018, 199
  • [8] A review of microbial fuel cells coupled with constructed wetland
    Li, Zhenling
    Qian, Chaowen
    Ding, Yanli
    Bai, Shaoyuan
    Lv, Xiaojun
    PROCEEDINGS OF THE 2016 5TH INTERNATIONAL CONFERENCE ON SUSTAINABLE ENERGY AND ENVIRONMENT ENGINEERING (ICSEEE 2016), 2016, 63 : 1 - 4
  • [9] The Role of Wetland Plants on Wastewater Treatment and Electricity Generation in Constructed Wetland Coupled with Microbial Fuel Cell
    Li, Ke
    Qi, Jingyao
    Zhang, Fuguo
    Miwornunyuie, Nicholas
    Amaniampong, Paulette Serwaa
    Koomson, Desmond Ato
    Chen, Lei
    Yan, Yu
    Dong, Yanhong
    Setordjie, Victor Edem
    Samwini, Abigail Mwin-nea
    APPLIED SCIENCES-BASEL, 2021, 11 (16):
  • [10] Optimizing the performance of organics and nutrient removal in constructed wetland-microbial fuel cell systems
    Wang, Xiaoou
    Tian, Yimei
    Liu, Hong
    Zhao, Xinhua
    Peng, Sen
    SCIENCE OF THE TOTAL ENVIRONMENT, 2019, 653 : 860 - 871