mRIN for direct assessment of genome-wide and gene-specific mRNA integrity from large-scale RNA-sequencing data

被引:42
|
作者
Feng, Huijuan [1 ,2 ,3 ]
Zhang, Xuegong [1 ,2 ]
Zhang, Chaolin [3 ]
机构
[1] Tsinghua Univ, MOE Key Lab Bioinformat, Beijing 100084, Peoples R China
[2] Tsinghua Univ, TNLIST, Bioinformat Div, Dept Automat, Beijing 100084, Peoples R China
[3] Columbia Univ, Dept Syst Biol, Dept Biochem & Mol Biophys, Ctr Motor Neuron Biol & Dis, New York, NY 10032 USA
来源
NATURE COMMUNICATIONS | 2015年 / 6卷
基金
美国国家卫生研究院;
关键词
QUALITY-CONTROL; HUMAN BRAIN; SEQ DATA; ISOFORM EXPRESSION; DEGRADATION; DECAY; TRANSCRIPTOME; QUANTIFICATION; SITES; MOUSE;
D O I
10.1038/ncomms8816
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
The volume of RNA-Seq data sets in public repositories has been expanding exponentially, providing unprecedented opportunities to study gene expression regulation. Because degraded RNA samples, such as those collected from post-mortem tissues, can result in distinct expression profiles with potential biases, a particularly important step in mining these data is quality control. Here we develop a method named mRIN to directly assess mRNA integrity from RNA-Seq data at the sample and individual gene level. We systematically analyse large-scale RNA-Seq data sets of the human brain transcriptome generated by different consortia. Our analysis demonstrates that 3' bias resulting from partial RNA fragmentation in post-mortem tissues has a marked impact on global expression profiles, and that mRIN effectively identifies samples with different levels of mRNA degradation. Unexpectedly, this process has a reproducible and gene-specific component, and transcripts with different stabilities are associated with distinct functions and structural features reminiscent of mRNA decay in living cells.
引用
收藏
页数:10
相关论文
共 50 条
  • [1] mRIN for direct assessment of genome-wide and gene-specific mRNA integrity from large-scale RNA-sequencing data
    Huijuan Feng
    Xuegong Zhang
    Chaolin Zhang
    Nature Communications, 6
  • [2] Large-Scale Integrated Genome-Wide RNA Sequencing, miRNA Array, and Genomic Analyses to Unravel the Functionality of Genome-Wide Association Results in Endometriosis.
    Rahmioglu, Nilufer
    Lockstone, Helen
    Ferreira, Teresa
    Magi, Reedik
    Van De Bunt, Martijn
    Lindgren, Cecilia
    Morris, Andrew
    Becker, Christian
    Zondervan, Krina
    REPRODUCTIVE SCIENCES, 2017, 24 : 205A - 206A
  • [3] Large-Scale Genome-Wide mRNA Expression Profiling of 1003 Colorectal Cancers
    Ogino, S.
    Waldron, L.
    Hoshida, Y.
    Parmigiani, G.
    Golub, T.
    Huttenhower, C.
    Fuchs, C.
    MODERN PATHOLOGY, 2012, 25 : 173A - 173A
  • [4] Large-Scale Genome-Wide mRNA Expression Profiling of 1003 Colorectal Cancers
    Ogino, S.
    Waldron, L.
    Hoshida, Y.
    Parmigiani, G.
    Golub, T.
    Huttenhower, C.
    Fuchs, C.
    LABORATORY INVESTIGATION, 2012, 92 : 173A - 173A
  • [5] Genome-wide identification of directed gene networks using large-scale population genomics data
    Luijk, Rene
    Dekkers, Koen F.
    van Iterson, Maarten
    Arindrarto, Wibowo
    Claringbould, Annique
    Hop, Paul
    Boomsma, Dorret, I
    van Duijn, Cornelia M.
    van Greevenbroek, Marleen M. J.
    Veldink, Jan H.
    Wijmenga, Cisca
    Franke, Lude
    't Hoend, Peter A. C.
    Jansen, Rick
    van Meurs, Joyce
    Mei, Hailiang
    Slagboomi, P. Eline
    Heijmans, Bastiaan T.
    van Zwet, Erik W.
    NATURE COMMUNICATIONS, 2018, 9
  • [6] Genome-wide identification of directed gene networks using large-scale population genomics data
    René Luijk
    Koen F. Dekkers
    Maarten van Iterson
    Wibowo Arindrarto
    Annique Claringbould
    Paul Hop
    Dorret I. Boomsma
    Cornelia M. van Duijn
    Marleen M. J. van Greevenbroek
    Jan H. Veldink
    Cisca Wijmenga
    Lude Franke
    Peter A. C. ’t Hoen
    Rick Jansen
    Joyce van Meurs
    Hailiang Mei
    P. Eline Slagboom
    Bastiaan T. Heijmans
    Erik W. van Zwet
    Nature Communications, 9
  • [7] Fast Principal Component Analysis of Large-Scale Genome-Wide Data
    Abraham, Gad
    Inouye, Michael
    PLOS ONE, 2014, 9 (04):
  • [8] A large-scale zebrafish gene knockout resource for the genome-wide study of gene function
    Varshney, Gaurav K.
    Lu, Jing
    Gildea, Derek E.
    Huang, Haigen
    Pei, Wuhong
    Yang, Zhongan
    Huang, Sunny C.
    Schoenfeld, David
    Pho, Nam H.
    Casero, David
    Hirase, Takashi
    Mosbrook-Davis, Deborah
    Zhang, Suiyuan
    Jao, Li-En
    Zhang, Bo
    Woods, Ian G.
    Zimmerman, Steven
    Schier, Alexander F.
    Wolfsberg, Tyra G.
    Pellegrini, Matteo
    Burgess, Shawn M.
    Lin, Shuo
    GENOME RESEARCH, 2013, 23 (04) : 727 - 735
  • [9] Analysis of genome-wide association data by large-scale Bayesian logistic regression
    Yuanjia Wang
    Nanshi Sha
    Yixin Fang
    BMC Proceedings, 3 (Suppl 7)
  • [10] Utilization of a Targeted Next-Generation Sequencing Assay for Assessment of Tumor Cellularity, and Genome-Wide and Gene-Specific Loss of Heterozygosity (LOH)
    Gupta, M.
    Sadis, S.
    Veitch, J.
    Bandla, S.
    Conner, K.
    Cyanam, D.
    El-Difrawy, S.
    Ewing, A.
    Kaznadzey, D.
    Kilzer, J.
    Kraltcheva, A.
    Mittal, V.
    Tseng, Y.
    Van Loy, C.
    Williams, P.
    Tom, W.
    Yang, C.
    Au-Young, J.
    Asuncion, L.
    Hyland, F.
    Wong-Ho, E.
    JOURNAL OF MOLECULAR DIAGNOSTICS, 2020, 22 (11): : S67 - S67