Social media data for conservation science: A methodological overview

被引:263
|
作者
Toivonen, Tuuli [1 ,4 ]
Heikinheimo, Vuokko [1 ,4 ]
Fink, Christoph [1 ,4 ]
Hausmann, Anna [1 ,4 ]
Hiippala, Tuomo [1 ,2 ,4 ]
Jarv, Olle [1 ,4 ]
Tenkanen, Henrikki [1 ,4 ]
Di Minin, Enrico [1 ,3 ,4 ]
机构
[1] Univ Helsinki, Dept Geosci & Geog, Helsinki, Finland
[2] Univ Helsinki, Dept Languages, Helsinki, Finland
[3] Univ KwaZulu Natal, Sch Life Sci, ZA-4041 Durban, South Africa
[4] Univ Helsinki, Helsinki Inst Sustainabil Sci HELSUS, Helsinki, Finland
基金
芬兰科学院;
关键词
Social media; Nature conservation; Biodiversity; Spatial analysis; Content analysis; Machine learning; Artificial intelligence; CULTURAL ECOSYSTEM SERVICES; BIG DATA; COMMUNITY DETECTION; NETWORK SITES; TWITTER; CHALLENGES; INTENSITY; PATTERNS; TRADE; SPACE;
D O I
10.1016/j.biocon.2019.01.023
中图分类号
X176 [生物多样性保护];
学科分类号
090705 ;
摘要
Improved understanding of human-nature interactions is crucial to conservation science and practice, but collecting relevant data remains challenging. Recently, social media have become an increasingly important source of information on human-nature interactions. However, the use of advanced methods for analysing social media is still limited, and social media data are not used to their full potential. In this article, we present available sources of social media data and approaches to mining and analysing these data for conservation science. Specifically, we (i) describe what kind of relevant information can be retrieved from social media platforms, (ii) provide a detailed overview of advanced methods for spatio-temporal, content and network analyses, (iii) exemplify the potential of these approaches for real-world conservation challenges, and (iv) discuss the limitations of social media data analysis in conservation science. Combined with other data sources and carefully considering the biases and ethical issues, social media data can provide a complementary and cost-efficient information source for addressing the grand challenges of biodiversity conservation in the Anthropocene epoch.
引用
收藏
页码:298 / 315
页数:18
相关论文
共 50 条
  • [1] Prospects and challenges for social media data in conservation science
    Di Minin, Enrico
    Tenkanen, Henrikki
    Toivonen, Tuuli
    [J]. FRONTIERS IN ENVIRONMENTAL SCIENCE, 2015, 3
  • [2] Social Media as Social Science Data
    Domalewska, Dorota
    Wilson, Steven Lloyd
    [J]. NEW MEDIA & SOCIETY, 2024, 26 (02) : 1155 - 1157
  • [3] Social media as social science data
    Stokan, Eric
    Wilson, Steven Lloyd
    [J]. JOURNAL OF PUBLIC AFFAIRS EDUCATION, 2023,
  • [4] Social media as social science data
    Stokan, Eric
    Wilson, Steven Lloyd
    [J]. JOURNAL OF PUBLIC AFFAIRS EDUCATION, 2023,
  • [5] How to address data privacy concerns when using social media data in conservation science
    Di Minin, Enrico
    Fink, Christoph
    Hausmann, Anna
    Kremer, Jens
    Kulkarni, Ritwik
    [J]. CONSERVATION BIOLOGY, 2021, 35 (02) : 437 - 446
  • [6] Social media data for biodiversity conservation
    Adams, Vanessa M.
    [J]. TRENDS IN ECOLOGY & EVOLUTION, 2024, 39 (01) : 16 - 18
  • [7] Social media as a data resource for #monkseal conservation
    Sullivan, Mark
    Robinson, Stacie
    Littnan, Charles
    [J]. PLOS ONE, 2019, 14 (10):
  • [8] Representations and Privacy Methodological Questions for Social Media Data
    Jones, Corinne
    [J]. PROCEEDINGS OF THE 41ST INTERNATIONAL CONFERENCE ON DESIGN OF COMMUNICATION, SIGDOC 2023, 2023, : 96 - 102
  • [9] Social media data mining: An analysis & overview of social media networks and political landscape
    [J]. Joseph, Sethunya R. (Sethunya.joseph@studentmail.biust.ac.bw), 2016, Science and Engineering Research Support Society (09):
  • [10] The Social Media Macroscope: A science gateway for research using social media data
    Yun, Joseph T.
    Vance, Nickolas
    Wang, Chen
    Marini, Luigi
    Troy, Joseph
    Donelson, Curtis
    Chin, Chieh-Li
    Henderson, Mark D.
    [J]. FUTURE GENERATION COMPUTER SYSTEMS-THE INTERNATIONAL JOURNAL OF ESCIENCE, 2020, 111 : 819 - 828