Posterior consistency via precision operators for Bayesian nonparametric drift estimation in SDEs

被引:27
|
作者
Pokern, Y. [1 ]
Stuart, A. M. [2 ]
van Zanten, J. H. [3 ]
机构
[1] UCL, Dept Stat Sci, London WC1E 6BT, England
[2] Univ Warwick, Dept Math, Coventry CV4 7AL, W Midlands, England
[3] Univ Amsterdam, Korteweg de Vries Inst Math, NL-1012 WX Amsterdam, Netherlands
基金
英国工程与自然科学研究理事会;
关键词
Stochastic differential equation; Nonparametric Bayesian estimation; Posterior consistency; CONVERGENCE-RATES; DISTRIBUTIONS; DIFFUSIONS;
D O I
10.1016/j.spa.2012.08.010
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We study a Bayesian approach to nonparametric estimation of the periodic drift function of a one-dimensional diffusion from continuous-time data. Rewriting the likelihood in terms of local time of the process, and specifying a Gaussian prior with precision operator of differential form, we show that the posterior is also Gaussian with the precision operator also of differential form. The resulting expressions are explicit and lead to algorithms which are readily implementable. Using new functional limit theorems for the local time of diffusions on the circle, we bound the rate at which the posterior contracts around the true drift function. (C) 2012 Published by Elsevier B.V.
引用
收藏
页码:603 / 628
页数:26
相关论文
共 21 条