On the smallest singular value of multivariate Vandermonde matrices with clustered nodes

被引:13
|
作者
Kunis, Stefan [1 ,2 ]
Nagel, Dominik [1 ]
机构
[1] Osnabruck Univ, Inst Math, Osnabruck, Germany
[2] Osnabruck Univ, Res Ctr Cellular Nanoanalyt, Osnabruck, Germany
关键词
Vandermonde matrix; Colliding nodes; Condition number; Restricted Fourier matrices; Frequency analysis; Super-resolution; SUPERRESOLUTION; PARAMETERS; STABILITY; ESPRIT;
D O I
10.1016/j.laa.2020.06.003
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We prove lower bounds for the smallest singular value of rectangular, multivariate Vandermonde matrices with nodes on the complex unit circle. The nodes are "off the grid", groups of nodes cluster, and the studied minimal singular value is bounded below by the product of inverted distances of a node to all other nodes in the specific cluster. By using known and new upper bounds for the smallest singular value, this completely settles the univariate case and pairs of nodes in the multivariate case, both including reasonable sharp constants. For larger clusters, we show that the smallest singular value depends also on the geometric configuration within a cluster. (C) 2020 Elsevier Inc. All rights reserved.
引用
收藏
页码:1 / 20
页数:20
相关论文
共 50 条
  • [1] The spectral properties of Vandermonde matrices with clustered nodes
    Batenkov, Dmitry
    Diederichs, Benedikt
    Goldman, Gil
    Yomdi, Yosef
    [J]. LINEAR ALGEBRA AND ITS APPLICATIONS, 2021, 609 : 37 - 72
  • [2] Single-exponential bounds for the smallest singular value of Vandermonde matrices in the sub-Rayleigh regime
    Batenkov, Dmitry
    Goldman, Gil
    [J]. APPLIED AND COMPUTATIONAL HARMONIC ANALYSIS, 2021, 55 : 426 - 439
  • [3] Multivariate Vandermonde matrices with separated nodes on the unit circle are stable
    Kunis, Stefan
    Nagel, Dominik
    Strotmann, Anna
    [J]. APPLIED AND COMPUTATIONAL HARMONIC ANALYSIS, 2022, 58 : 50 - 59
  • [4] Estimation of the eigenvalues and the smallest singular value of matrices
    Zou, Limin
    Jiang, Youyi
    [J]. LINEAR ALGEBRA AND ITS APPLICATIONS, 2010, 433 (06) : 1203 - 1211
  • [5] On the smallest singular value of symmetric random matrices
    Jain, Vishesh
    Sah, Ashwin
    Sawhney, Mehtaab
    [J]. COMBINATORICS PROBABILITY & COMPUTING, 2022, 31 (04): : 662 - 683
  • [6] Smallest singular value of sparse random matrices
    Litvak, Alexander E.
    Rivasplata, Omar
    [J]. STUDIA MATHEMATICA, 2012, 212 (03) : 195 - 218
  • [7] Vandermonde matrices with Chebyshev nodes
    Li, Ren-Cang
    [J]. LINEAR ALGEBRA AND ITS APPLICATIONS, 2008, 428 (8-9) : 1803 - 1832
  • [8] Vandermonde matrices on integer nodes
    Eisinberg, A
    Franze, G
    Pugliese, P
    [J]. NUMERISCHE MATHEMATIK, 1998, 80 (01) : 75 - 85
  • [9] Vandermonde matrices on integer nodes
    Alfredo Eisinberg
    Giuseppe Franzé
    Paolo Pugliese
    [J]. Numerische Mathematik, 1998, 80 : 75 - 85
  • [10] Smallest singular value of random matrices with independent columns
    Adamczak, Radoslaw
    Guedon, Olivier
    Litvak, Alexander
    Pajor, Alain
    Tomczak-Jaegermann, Nicole
    [J]. COMPTES RENDUS MATHEMATIQUE, 2008, 346 (15-16) : 853 - 856