MuACOsm - A New Mutation-Based Ant Colony Optimization Algorithm for Learning Finite-State Machines

被引:0
|
作者
Chivilikhin, Daniil [1 ]
Ulyantsev, Vladimir [1 ]
机构
[1] St Petersburg Natl Res Univ Informat Technol Mech, St Petersburg, Russia
关键词
finite-state machine; learning; induction; ant colony optimization; EVOLUTION;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In this paper we present MuACOsm - a new method of learning Finite-State Machines (FSM) based on Ant Colony Optimization (ACO) and a graph representation of the search space. The input data is a set of events, a set of actions and the number of states in the target FSM. The goal is to maximize the given fitness function, which is defined on the set of all FSMs with given parameters. The new algorithm is compared with evolutionary algorithms and a genetic programming related approach on the well-known Artificial Ant problem.
引用
收藏
页码:511 / 518
页数:8
相关论文
共 50 条
  • [1] Learning Finite-State Machines with Classical and Mutation-Based Ant Colony Optimization: Experimental Evaluation
    Chivilikhin, Daniil
    Ulyantsev, Vladimir
    [J]. 2013 1ST BRICS COUNTRIES CONGRESS ON COMPUTATIONAL INTELLIGENCE AND 11TH BRAZILIAN CONGRESS ON COMPUTATIONAL INTELLIGENCE (BRICS-CCI & CBIC), 2013, : 528 - 533
  • [2] Learning Finite-State Machines with Ant Colony Optimization
    Chivilikhin, Daniil
    Ulyantsev, Vladimir
    [J]. SWARM INTELLIGENCE (ANTS 2012), 2012, 7461 : 268 - 275
  • [3] Test-Based Extended Finite-State Machines Induction with Evolutionary Algorithms and Ant Colony Optimization
    Chivilikhin, Daniil
    Ulyantsev, Vladimir
    Tsarev, Fedor
    [J]. PROCEEDINGS OF THE FOURTEENTH INTERNATIONAL CONFERENCE ON GENETIC AND EVOLUTIONARY COMPUTATION COMPANION (GECCO'12), 2012, : 603 - 606
  • [4] Inducing finite state machines from training samples using ant colony optimization
    I. P. Buzhinsky
    V. I. Ulyantsev
    D. S. Chivilikhin
    A. A. Shalyto
    [J]. Journal of Computer and Systems Sciences International, 2014, 53 : 256 - 266
  • [5] Inducing finite state machines from training samples using ant colony optimization
    Buzhinsky, I. P.
    Ulyantsev, V. I.
    Chivilikhin, D. S.
    Shalyto, A. A.
    [J]. JOURNAL OF COMPUTER AND SYSTEMS SCIENCES INTERNATIONAL, 2014, 53 (02) : 256 - 266
  • [6] STATE ASSIGNMENT OF FINITE-STATE MACHINES USING A GENETIC ALGORITHM
    ALMAINI, AEA
    MILLER, JF
    THOMSON, P
    BILLINA, S
    [J]. IEE PROCEEDINGS-COMPUTERS AND DIGITAL TECHNIQUES, 1995, 142 (04): : 279 - 286
  • [7] A New Fast Ant Colony Optimization Algorithm: The Saltatory Evolution Ant Colony Optimization Algorithm
    Li, Shugang
    Wei, Yanfang
    Liu, Xin
    Zhu, He
    Yu, Zhaoxu
    [J]. MATHEMATICS, 2022, 10 (06)
  • [8] A recursive algorithm for diagnosis in hierarchical finite-state machines
    Mohammadi, R.
    Hashtrudi-Zad, S.
    [J]. 2007 IEEE INTERNATIONAL CONFERENCE ON SYSTEMS, MAN AND CYBERNETICS, VOLS 1-8, 2007, : 2938 - 2943
  • [9] Learning finite-state machines from inexperienced teachers
    Grinchtein, Olga
    Leucker, Martin
    [J]. GRAMMATICAL INFERENCE: ALGORITHMS AND APPLICATIONS, PROCEEDINGS, 2006, 4201 : 344 - 345
  • [10] A New Algorithm for Polygonal Approximation Based on Ant Colony Optimization
    Di Ruberto, Cecilia
    Morgera, Andrea
    [J]. IMAGE ANALYSIS AND PROCESSING - ICIAP 2009, PROCEEDINGS, 2009, 5716 : 633 - 641