Modular-based multiscale modeling on viscoelasticity of polymer nanocomposites

被引:9
|
作者
Li, Ying [1 ,2 ]
Liu, Zeliang [3 ]
Jia, Zheng [4 ]
Liu, Wing Kam [4 ]
Aldousari, Saad M. [5 ]
Hedia, Hassan S. [5 ]
Asiri, Saeed A. [5 ]
机构
[1] Univ Connecticut, Dept Mech Engn, Storrs, CT 06269 USA
[2] Univ Connecticut, Inst Mat Sci, Storrs, CT 06269 USA
[3] Northwestern Univ, Theoret & Appl Mech, Evanston, IL 60208 USA
[4] Northwestern Univ, Dept Mech Engn, Evanston, IL 60208 USA
[5] King Abdulaziz Univ, Dept Mech Engn, Jeddah 21589, Saudi Arabia
关键词
Polymer nanocomposites; Multiscalemodeling; Viscoelasticity; Material design; Finite element analysis; Molecular dynamics; GLASS-TRANSITION TEMPERATURE; FINITE SPHERICAL DOMAIN; TIME-DEPENDENT BEHAVIOR; RUBBER-LIKE MATERIALS; MICRO-MACRO APPROACH; MICROSTRUCTURE CHARACTERIZATION; 3-DIMENSIONAL MICROSTRUCTURES; FILLER INTERACTIONS; MOLECULAR-DYNAMICS; CONSTITUTIVE MODEL;
D O I
10.1007/s00466-016-1346-3
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Polymer nanocomposites have been envisioned as advanced materials for improving the mechanical performance of neat polymers used in aerospace, petrochemical, environment and energy industries. With the filler size approaching the nanoscale, composite materials tend to demonstrate remarkable thermomechanical properties, even with addition of a small amount of fillers. These observations confront the classical composite theories and are usually attributed to the high surface-area-to-volume-ratio of the fillers, which can introduce strong nanoscale interfacial effect and relevant long-range perturbation on polymer chain dynamics. Despite decades of research aimed at understanding interfacial effect and improving the mechanical performance of composite materials, it is not currently possible to accurately predict the mechanical properties of polymer nanocomposites directly from their molecular constituents. To overcome this challenge, different theoretical, experimental and computational schemes will be used to uncover the key physical mechanisms at the relevant spatial and temporal scales for predicting and tuning constitutive behaviors in silico, thereby establishing a bottom-up virtual design principle to achieve unprecedented mechanical performance of nanocomposites. A modular-based multiscale modeling approach for viscoelasticity of polymer nanocomposites has been proposed and discussed in this study, including four modules: (A) neat polymer toolbox; (B) interphase toolbox; (C) microstructural toolbox and (D) homogenization toolbox. Integrating these modules together, macroscopic viscoelasticity of polymer nanocomposites could be directly predicted from their molecular constituents. This will maximize the computational ability to design novel polymer composites with advanced performance. More importantly, elucidating the viscoelasticity of polymer nanocomposites through fundamental studies is a critical step to generate an integrated computational material engineering principle for discovering and manufacturing new composites with transformative impact on aerospace, automobile, petrochemical industries.
引用
收藏
页码:187 / 201
页数:15
相关论文
共 50 条
  • [1] Modular-based multiscale modeling on viscoelasticity of polymer nanocomposites
    Ying Li
    Zeliang Liu
    Zheng Jia
    Wing Kam Liu
    Saad M. Aldousari
    Hassan S. Hedia
    Saeed A. Asiri
    [J]. Computational Mechanics, 2017, 59 : 187 - 201
  • [2] Multiscale modeling and simulation of polymer nanocomposites
    Zeng, Q. H.
    Yu, A. B.
    Lu, G. Q.
    [J]. PROGRESS IN POLYMER SCIENCE, 2008, 33 (02) : 191 - 269
  • [3] MULTISCALE MODELING OF POLYMER/CLAY NANOCOMPOSITES
    Pereira, Simao Pedro
    Scocchi, Giulio
    Toth, Radovan
    Posocco, Paola
    Nieto, Daniel R.
    Pricl, Sabrina
    Fermeglia, Maurizio
    [J]. JOURNAL OF MULTISCALE MODELLING, 2011, 3 (03) : 151 - 176
  • [4] Design of a modular-based fluorescent conjugated polymer for selective sensing
    Huang, HM
    Wang, K
    Tan, WH
    An, D
    Yang, XH
    Huang, SS
    Zhai, Q
    Zhou, L
    Jin, Y
    [J]. ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2004, 43 (42) : 5635 - 5638
  • [5] Multiscale modeling of viscoelastic properties of polymer nanocomposites
    Borodin, O
    Bedrov, D
    Smith, GD
    Nairn, J
    Bardenhagen, S
    [J]. JOURNAL OF POLYMER SCIENCE PART B-POLYMER PHYSICS, 2005, 43 (08) : 1005 - 1013
  • [6] Multiscale modeling of polymer-matrix nanocomposites
    Vogiatzis, Georgios G.
    Voyiatzis, Evangelos
    Theodorou, Doros N.
    [J]. ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2012, 244
  • [7] Multiscale modeling of electrical conductivity of carbon nanotubes based polymer nanocomposites
    Khromov, K. Yu.
    Knizhnik, A. A.
    Potapkin, B. V.
    Kenny, J. M.
    [J]. JOURNAL OF APPLIED PHYSICS, 2017, 121 (22)
  • [8] Modeling confinement in polymer nanocomposites from linear viscoelasticity data
    Chen, Xun
    Sobkowicz, Margaret J.
    [J]. RHEOLOGICA ACTA, 2015, 54 (9-10) : 847 - 857
  • [9] Modeling confinement in polymer nanocomposites from linear viscoelasticity data
    Xun Chen
    Margaret J. Sobkowicz
    [J]. Rheologica Acta, 2015, 54 : 847 - 857
  • [10] SIMULATION BASED DESIGN OF POLYMER CLAY NANOCOMPOSITES USING MULTISCALE MODELING: AN OVERVIEW
    Katti, Dinesh R.
    Katti, Kalpana S.
    [J]. NANOSTRUCTURED MATERIALS AND NANOTECHNOLOGY III, 2010, 30 (07): : 27 - 33