A discriminative view of MRF pre-processing algorithms

被引:0
|
作者
Wang, Chen [1 ,2 ]
Herrmann, Charles [2 ]
Zabih, Ramin [1 ,2 ]
机构
[1] Google Res, Mountain View, CA 94043 USA
[2] Cornell Univ, Ithaca, NY 14853 USA
关键词
DEAD-END ELIMINATION; OPTIMIZATION;
D O I
10.1109/ICCV.2017.587
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
While Markov Random Fields (MRFs) are widely used in computer vision, they present a quite challenging inference problem. MRF inference can be accelerated by preprocessing techniques like Dead End Elimination (DEE) [8] or QPBO-based approaches [18, 24, 25] which compute the optimal labeling of a subset of variables. These techniques are guaranteed to never wrongly label a variable but they often leave a large number of variables unlabeled. We address this shortcoming by interpreting pre-processing as a classification problem, which allows us to trade off false positives (i.e., giving a variable an incorrect label) versus false negatives (i.e., failing to label a variable). We describe an efficient discriminative rule that finds optimal solutions for a subset of variables. Our technique provides both per-instance and worst-case guarantees concerning the quality of the solution. Empirical studies were conducted over several benchmark datasets. We obtain a speedup factor of 2 to 12 over expansion moves [4] without preprocessing, and on difficult non-submodular energy functions produce slightly lower energy.
引用
收藏
页码:5505 / 5514
页数:10
相关论文
共 50 条
  • [1] On Pre-processing Algorithms for Data Stream
    Duda, Piotr
    Jaworski, Maciej
    Pietruczuk, Lena
    [J]. ARTIFICIAL INTELLIGENCE AND SOFT COMPUTING, PT II, 2012, 7268 : 56 - 63
  • [2] A MeerKAT view of pre-processing in the Fornax A group
    [J]. 1600, EDP Sciences (648):
  • [3] A MeerKAT view of pre-processing in the Fornax A group
    Kleiner, D.
    Serra, P.
    Maccagni, F. M.
    Venhola, A.
    Morokuma-Matsui, K.
    Peletier, R.
    Iodice, E.
    Raj, M. A.
    de Blok, W. J. G.
    Comrie, A.
    Jozsa, G. I. G.
    Kamphuis, P.
    Loni, A.
    Loubser, S., I
    Molnar, D. Cs
    Passmoor, S. S.
    Ramatsoku, M.
    Sivitilli, A.
    Smirnov, O.
    Thorat, K.
    Vitello, F.
    [J]. ASTRONOMY & ASTROPHYSICS, 2021, 648
  • [4] The Impact of Pre-Processing Algorithms in Facial Expression Recognition
    Canedo, Daniel
    Neves, Antonio J. R.
    [J]. THIRTEENTH INTERNATIONAL CONFERENCE ON MACHINE VISION (ICMV 2020), 2021, 11605
  • [5] Virtual view rendering with pre-processing of depth map
    Zhu, Linwei
    Yu, Mei
    Luo, Ting
    Li, Fucui
    Fu, Songyin
    Peng, Zongju
    Shao, Feng
    [J]. 2011 INTERNATIONAL CONFERENCE ON PHOTONICS, 3D-IMAGING, AND VISUALIZATION, 2011, 8205
  • [6] Data Pre-Processing by Genetic Algorithms for Bankruptcy Prediction
    Tsai, Chih-Fong
    Chou, Jui-Sheng
    [J]. 2011 IEEE INTERNATIONAL CONFERENCE ON INDUSTRIAL ENGINEERING AND ENGINEERING MANAGEMENT (IEEM), 2011, : 1780 - 1783
  • [7] Image pre-processing by neuron-like algorithms
    Kuznetsov, SO
    Nuidel, IV
    Panfilov, AI
    Yakhno, VG
    [J]. OPTICAL MEMORY AND NEURAL NETWORKS, 1998, 3402 : 479 - 485
  • [8] Simplification algorithms for CT reconstruction pre-processing and filtering
    Besson, GM
    [J]. 1997 IEEE NUCLEAR SCIENCE SYMPOSIUM - CONFERENCE RECORD, VOLS 1 & 2, 1998, : 1537 - 1541
  • [9] An artificial immune algorithms apply to pre-processing signals
    Swiecicki, M
    Wajs, W
    Wais, P
    [J]. COMPUTATIONAL SCIENCE - ICCS 2004, PT 2, PROCEEDINGS, 2004, 3037 : 703 - 707
  • [10] Research on pre-processing and post-processing algorithms in edge tracing
    Huang, CZ
    Yang, M
    [J]. ISTM/2003: 5TH INTERNATIONAL SYMPOSIUM ON TEST AND MEASUREMENT, VOLS 1-6, CONFERENCE PROCEEDINGS, 2003, : 1931 - 1935