The Risa R/Bioconductor package: integrative data analysis from experimental metadata and back again

被引:12
|
作者
Gonzalez-Beltran, Alejandra [1 ]
Neumann, Steffen [2 ]
Maguire, Eamonn [1 ]
Sansone, Susanna-Assunta [1 ]
Rocca-Serra, Philippe [1 ]
机构
[1] Univ Oxford, Oxford E Res Ctr, Oxford OX1 3QG, England
[2] Leibniz Inst Plant Biochem, Dept Stress & Dev Biol, D-06120 Halle, Germany
来源
BMC BIOINFORMATICS | 2014年 / 15卷
基金
英国生物技术与生命科学研究理事会;
关键词
MINIMUM INFORMATION; SPECTROMETRY DATA; ANNOTATION; STANDARDS; ONTOLOGY; MIAME;
D O I
10.1186/1471-2105-15-S1-S11
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Background.: The ISA-Tab format and software suite have been developed to break the silo effect induced by technology-specific formats for a variety of data types and to better support experimental metadata tracking. Experimentalists seldom use a single technique to monitor biological signals. Providing a multi-purpose, pragmatic and accessible format that abstracts away common constructs for describing Investigations, Studies and Assays, ISA is increasingly popular. To attract further interest towards the format and extend support to ensure reproducible research and reusable data, we present the Risa package, which delivers a central component to support the ISA format by enabling effortless integration with R, the popular, open source data crunching environment. Results.: The Risa package bridges the gap between the metadata collection and curation in an ISA-compliant way and the data analysis using the widely used statistical computing environment R. The package offers functionality for: i) parsing ISA-Tab datasets into R objects, ii) augmenting annotation with extra metadata not explicitly stated in the ISA syntax; iii) interfacing with domain specific R packages iv) suggesting potentially useful R packages available in Bioconductor for subsequent processing of the experimental data described in the ISA format; and finally v) saving back to ISA-Tab files augmented with analysis specific metadata from R. We demonstrate these features by presenting use cases for mass spectrometry data and DNA microarray data. Conclusions.: The Risa package is open source (with LGPL license) and freely available through Bioconductor. By making Risa available, we aim to facilitate the task of processing experimental data, encouraging a uniform representation of experimental information and results while delivering tools for ensuring traceability and provenance tracking. Software availability.: The Risa package is available since Bioconductor 2.11 (version 1.0.0) and version 1.2.1 appeared in Bioconductor 2.12, both along with documentation and examples. The latest version of the code is at the development branch in Bioconductor and can also be accessed from GitHub https://github.com/ISA-tools/Risa, where the issue tracker allows users to report bugs or feature requests.
引用
收藏
页码:1 / 12
页数:12
相关论文
共 50 条
  • [1] The Risa R/Bioconductor package: integrative data analysis from experimental metadata and back again
    Alejandra González-Beltrán
    Steffen Neumann
    Eamonn Maguire
    Susanna-Assunta Sansone
    Philippe Rocca-Serra
    [J]. BMC Bioinformatics, 15
  • [2] SpidermiR: An R/Bioconductor Package for Integrative Analysis with miRNA Data
    Cava, Claudia
    Colaprico, Antonio
    Bertoli, Gloria
    Graudenzi, Alex
    Silva, Tiago C.
    Olsen, Catharina
    Noushmehr, Houtan
    Bontempi, Gianluca
    Mauri, Giancarlo
    Castiglioni, Isabella
    [J]. INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, 2017, 18 (02)
  • [3] TCGAbiolinks: an R/Bioconductor package for integrative analysis of TCGA data
    Colaprico, Antonio
    Silva, Tiago C.
    Olsen, Catharina
    Garofano, Luciano
    Cava, Claudia
    Garolini, Davide
    Sabedot, Thais S.
    Malta, Tathiane M.
    Pagnotta, Stefano M.
    Castiglioni, Isabella
    Ceccarelli, Michele
    Bontempi, Gianluca
    Noushmehr, Houtan
    [J]. NUCLEIC ACIDS RESEARCH, 2016, 44 (08) : e71
  • [4] GDCRNATools: an R/Bioconductor package for integrative analysis of lncRNA, miRNA and mRNA data in GDC
    Li, Ruidong
    Qu, Han
    Wang, Shibo
    Wei, Julong
    Zhang, Le
    Ma, Renyuan
    Lu, Jianming
    Zhu, Jianguo
    Zhong, Wei-De
    Jia, Zhenyu
    [J]. BIOINFORMATICS, 2018, 34 (14) : 2515 - 2517
  • [5] PathwayPCA: an R/Bioconductor Package for Pathway Based Integrative Analysis of Multi-Omics Data
    Odom, Gabriel J.
    Ban, Yuguang
    Colaprico, Antonio
    Liu, Lizhong
    Silva, Tiago Chedraoui
    Sun, Xiaodian
    Pico, Alexander R.
    Zhang, Bing
    Wang, Lily
    Chen, Xi
    [J]. PROTEOMICS, 2020, 20 (21-22)
  • [6] stam - a Bioconductor compliant R package for structured analysis of microarray data
    Lottaz, C
    Spang, R
    [J]. BMC BIOINFORMATICS, 2005, 6 (1)
  • [7] stam – a Bioconductor compliant R package for structured analysis of microarray data
    Claudio Lottaz
    Rainer Spang
    [J]. BMC Bioinformatics, 6
  • [8] Methrix: an R/Bioconductor package for systematic aggregation and analysis of bisulfite sequencing data
    Mayakonda, Anand
    Schoenung, Maximilian
    Hey, Joschka
    Batra, Rajbir Nath
    Feuerstein-Akgoz, Clarissa
    Koehler, Kristin
    Lipka, Daniel B.
    Sotillo, Rocio
    Plass, Christoph
    Lutsik, Pavlo
    Toth, Reka
    [J]. BIOINFORMATICS, 2020, 36 (22-23) : 5524 - 5525
  • [9] CytoTree: an R/Bioconductor package for analysis and visualization of flow and mass cytometry data
    Yuting Dai
    Aining Xu
    Jianfeng Li
    Liang Wu
    Shanhe Yu
    Jun Chen
    Weili Zhao
    Xiao-Jian Sun
    Jinyan Huang
    [J]. BMC Bioinformatics, 22
  • [10] CytoTree: an R/Bioconductor package for analysis and visualization of flow and mass cytometry data
    Dai, Yuting
    Xu, Aining
    Li, Jianfeng
    Wu, Liang
    Yu, Shanhe
    Chen, Jun
    Zhao, Weili
    Sun, Xiao-Jian
    Huang, Jinyan
    [J]. BMC BIOINFORMATICS, 2021, 22 (01)