Estimating the number of hidden neurons in a feedforward network using the singular value decomposition

被引:0
|
作者
Teoh, Eu Jin [1 ]
Xiang, Cheng [1 ]
Tan, Kay Chen [1 ]
机构
[1] Natl Univ Singapore, Dept Elect & Comp Engn, Singapore 117576, Singapore
关键词
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
We attempt to quantify the significance of increasing the number of neurons in the hidden layer of a feedforward neural network architecture using the singular value decomposition (SVD). Through this, we extend some well-known properties of the SVD in evaluating the generalizability of single hidden layer feedforward networks (SLFNs) with respect to the number of hidden neurons. The generalization capability of the SLFN is measured by the degree of linear independency of the patterns in hidden layer space, which can be indirectly quantified from the singular values obtained from the SVD, in a post-learning step.
引用
收藏
页码:858 / 865
页数:8
相关论文
共 50 条
  • [1] Estimating the number of hidden neurons in a feedforward network using the singular value decomposition
    Teoh, E. J.
    Tan, K. C.
    Xiang, C.
    [J]. IEEE TRANSACTIONS ON NEURAL NETWORKS, 2006, 17 (06): : 1623 - 1629
  • [2] Training Single Hidden Layer Feedforward Neural Networks by Singular Value Decomposition
    Hieu Trung Huynh
    Won, Yonggwan
    [J]. ICCIT: 2009 FOURTH INTERNATIONAL CONFERENCE ON COMPUTER SCIENCES AND CONVERGENCE INFORMATION TECHNOLOGY, VOLS 1 AND 2, 2009, : 1300 - 1304
  • [3] Monitoring Level of Hypnosis Using Stationary Wavelet Transform and Singular Value Decomposition Entropy With Feedforward Neural Network
    Dutt, Muhammad Ibrahim
    Saadeh, Wala
    [J]. IEEE TRANSACTIONS ON NEURAL SYSTEMS AND REHABILITATION ENGINEERING, 2023, 31 : 1963 - 1973
  • [4] Network analysis using visualization and singular value decomposition
    Carbonaro, M
    [J]. PROCEEDINGS OF THE TWENTIETH ANNUAL CONFERENCE OF THE COGNITIVE SCIENCE SOCIETY, 1998, : 1207 - 1207
  • [5] Estimating the number of Hidden Nodes of the Single-hidden-layer Feedforward Neural Networks
    Cai, Guang-Wei
    Fang, Zhi
    Chen, Yue-Feng
    [J]. 2019 15TH INTERNATIONAL CONFERENCE ON COMPUTATIONAL INTELLIGENCE AND SECURITY (CIS 2019), 2019, : 172 - 176
  • [6] BEARING FAULT DIAGNOSIS USING SINGULAR VALUE DECOMPOSITION AND HIDDEN MARKOV MODELING
    Wang, Dong
    Miao, Qiang
    Sun, Rui
    Huang, Hong-Zhong
    [J]. PROCEEDINGS OF THE ASME INTERNATIONAL DESIGN ENGINEERING TECHNICAL CONFERENCES AND COMPUTERS AND INFORMATION IN ENGINEERING CONFERENCE, VOL 3, 2010, : 811 - 817
  • [7] TRUST MODEL FOR SOCIAL NETWORK USING SINGULAR VALUE DECOMPOSITION
    Ntwiga, Davis Bundi
    Weke, Patrick
    Kirumbu, Michael Kiura
    [J]. INTERDISCIPLINARY DESCRIPTION OF COMPLEX SYSTEMS, 2016, 14 (03) : 296 - 302
  • [8] NEURAL NETWORK FOR SINGULAR VALUE DECOMPOSITION
    CICHOCKI, A
    [J]. ELECTRONICS LETTERS, 1992, 28 (08) : 784 - 786
  • [9] Optimizing the number of hidden nodes of a feedforward artificial neural network
    Fletcher, L
    Katkovnik, V
    Steffens, FE
    Engelbrecht, AP
    [J]. IEEE WORLD CONGRESS ON COMPUTATIONAL INTELLIGENCE, 1998, : 1608 - 1612
  • [10] Estimating the Jacobian of the Singular Value Decomposition: Theory and applications
    Papadopoulo, T
    Lourakis, MIA
    [J]. COMPUTER VISION - ECCV 2000, PT I, PROCEEDINGS, 2000, 1842 : 554 - 570