Γ-convergence and H-convergence of linear elliptic operators

被引:6
|
作者
Ansini, Nadia [1 ]
Dal Maso, Gianni [2 ]
Zeppieri, Caterina Ida [3 ]
机构
[1] Univ Roma La Sapienza, Dipartimento Matemat G Castelnuovo, Piazzale Aldo Moro 2, I-00185 Rome, Italy
[2] SISSA, I-34136 Trieste, Italy
[3] Univ Bonn, Inst Angew Math, D-53115 Bonn, Germany
来源
基金
欧洲研究理事会;
关键词
Linear elliptic operators; Gamma-convergence; H-convergence;
D O I
10.1016/j.matpur.2012.09.004
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider a sequence of linear Dirichlet problems as follows {-div(sigma(epsilon)del mu(epsilon)) = f in Omega, mu(epsilon) is an element of H-0(1)(Omega), with (sigma(epsilon)) uniformly elliptic and possibly non-symmetric. Using purely variational arguments we give an alternative proof of the compactness of H-convergence, originally proved by Murat and Tartar. (C) 2012 Elsevier Masson SAS. All rights reserved.
引用
收藏
页码:321 / 329
页数:9
相关论文
共 50 条
  • [1] H-convergence and numerical schemes for elliptic problems
    Eymard, R
    Gallouët, T
    [J]. SIAM JOURNAL ON NUMERICAL ANALYSIS, 2003, 41 (02) : 539 - 562
  • [2] H-CONVERGENCE FOR QUASI-LINEAR ELLIPTIC-EQUATIONS WITH QUADRATIC GROWTH
    BENSOUSSAN, A
    BOCCARDO, L
    MURAT, F
    [J]. APPLIED MATHEMATICS AND OPTIMIZATION, 1992, 26 (03): : 253 - 272
  • [3] Nonlocal H-convergence
    Waurick, Marcus
    [J]. CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 2018, 57 (06)
  • [4] H-CONVERGENCE FOR EQUATIONS DEPENDING ON MONOTONE OPERATORS IN CARNOT GROUPS
    Maione, Alberto
    [J]. ELECTRONIC JOURNAL OF DIFFERENTIAL EQUATIONS, 2021, : 1 - 13
  • [5] H-convergence of multiplicable matrices
    Fabre, S
    Mossino, J
    [J]. CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 1998, 7 (02) : 125 - 139
  • [6] H-convergence of factorizable matrices
    [J]. Comptes Rendus L'Acad Sci Ser I Math, 6 (587):
  • [7] H-convergence of factorizable matrices
    Dufour, R
    Fabre, S
    Mossino, J
    [J]. COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 1996, 323 (06): : 587 - 592
  • [8] A criterion for H-convergence in elasticity
    Gustaffson, Bjoern
    Mossino, Jacqueline
    [J]. ASYMPTOTIC ANALYSIS, 2007, 51 (3-4) : 247 - 269
  • [9] H-convergence of multiplicable matrices
    Sylvie Fabre
    Jacqueline Mossino
    [J]. Calculus of Variations and Partial Differential Equations, 1998, 7 : 125 - 139
  • [10] H-convergence and homogenization of non-local elliptic operators in both perforated and non-perforated domains
    Loredana Bălilescu
    Amrita Ghosh
    Tuhin Ghosh
    [J]. Zeitschrift für angewandte Mathematik und Physik, 2019, 70