Numerical schemes for the Barenblatt model of non-equilibrium two-phase flow in porous media

被引:0
|
作者
Aregba-Driollet, Denise [1 ]
Bretti, Gabriella [2 ,3 ]
Natalini, Roberto [3 ]
机构
[1] Univ Bordeaux 1, Math Appl Bordeaux, F-33405 Talence, France
[2] Univ Salerno, Dept Informat Engn & Appl Math, I-84084 Fisciano, SA, Italy
[3] CNR, Ist Applicaz Calcolo M Picone, I-00161 Rome, Italy
关键词
Non-equilibrium flows; Scalar conservation laws; Two-phase flows;
D O I
10.1090/S0033-569X-08-01079-0
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We introduce some numerical approximations to a quasilinear problem proposed by G. I. Barenblatt to describe non-equilibrium two-phase fluid flows in permeable porous media, which apply to secondary oil recovery from natural reservoirs. Taking into account the theoretical results of global existence and uniqueness, we approximate the solutions by three numerical schemes, namely, the Diagonal First Order schemes (DFO and DFO2) and the Diagonal Second Order scheme (DSO). For DFO schemes convergence is proved. The schemes' behaviour is analysed and discussed through some numerical experiments.
引用
收藏
页码:201 / 231
页数:31
相关论文
共 50 条
  • [1] On the Barenblatt model for non-equilibrium two phase flow in porous media
    Natalini, R
    Tesei, A
    [J]. ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 1999, 150 (04) : 349 - 367
  • [2] On the Barenblatt Model for Non-Equilibrium Two Phase Flow in Porous Media
    Roberto Natalini
    Alberto Tesei
    [J]. Archive for Rational Mechanics and Analysis, 1999, 150 : 349 - 367
  • [3] Two-phase flow in porous media: local non-equilibrium model.
    Petit, F
    Fichot, F
    Quintard, M
    [J]. INTERNATIONAL JOURNAL OF THERMAL SCIENCES, 1999, 38 (03) : 239 - 249
  • [4] Numerical analysis for two-phase flow with non-equilibrium capillary pressure in anisotropic porous media
    Bouadjila, Khaled
    Saad, Ali Samir
    Saad, Mazen
    Mesfar, Wissal
    [J]. ADVANCES IN COMPUTATIONAL MATHEMATICS, 2022, 48 (05)
  • [5] Numerical analysis for two-phase flow with non-equilibrium capillary pressure in anisotropic porous media
    Khaled Bouadjila
    Ali Samir Saad
    Mazen Saad
    Wissal Mesfar
    [J]. Advances in Computational Mathematics, 2022, 48
  • [6] A two-phase numerical model for non-equilibrium sediment transport
    Chen, Xin
    Yu, Xiping
    [J]. Lixue Xuebao/Chinese Journal of Theoretical and Applied Mechanics, 2012, 44 (01): : 65 - 70
  • [7] A local thermal non-equilibrium model for two-phase flows with phase-change in porous media
    Duval, F
    Fichot, F
    Quintard, M
    [J]. INTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFER, 2004, 47 (03) : 613 - 639
  • [8] A homogeneous non-equilibrium two-phase critical flow model
    Travis, J. R.
    Koch, D. Piccioni
    Breitung, W.
    [J]. INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2012, 37 (22) : 17373 - 17379
  • [9] Visualization of Non-Equilibrium Two-Phase Flow
    Rasti, Mehdi
    Jeong, Ji H.
    [J]. 6TH IIR CONFERENCE ON THERMOPHYSICAL PROPERTIES AND TRANSFER PROCESSES OF REFRIGERANTS (TPTPR2021), 2021, : 119 - 126
  • [10] Upscaling of an immiscible non-equilibrium two-phase flow in double porosity media
    Konyukhov, Andrey
    Pankratov, Leonid
    [J]. APPLICABLE ANALYSIS, 2016, 95 (10) : 2300 - 2322