Orientation effects on near-field radiative heat transfer between complex-shaped dielectric particles

被引:6
|
作者
Walter, Lindsay P. P. [1 ]
Francoeur, Mathieu [1 ]
机构
[1] Univ Utah, Dept Mech Engn, Radiat Energy Transfer Lab, Salt Lake City, UT 84112 USA
基金
美国国家科学基金会;
关键词
Heat transfer - Radiative transfer - Silica;
D O I
10.1063/5.0116828
中图分类号
O59 [应用物理学];
学科分类号
摘要
The effect of orientation on near-field radiative heat transfer between two complex-shaped superellipsoid particles of SiO2 is presented. The particles under study are 50 nm in radius and of variable concavity. Orientation is characterized by the degree of rotational symmetry in the two-particle systems, and the radiative conductance is calculated using the discrete system Green's function approach to account for all electromagnetic interactions. The results reveal that the total conductance in some orientations can be up to twice that of other orientations when particles are at a center-of-mass separation distance of 110 nm. Orientation effects are not significantly correlated with system rotational symmetries but are strongly correlated with the minimum vacuum gap distance between particles. As such, orientation effects on near-field radiative heat transfer are a consequence of particle topology, with more extreme topologies leading to a continuation of orientation effects at larger particle center-of-mass separation distances. The concave superellipsoid particles display significant orientation effects up to a center-of-mass separation distance approximately equal to 3.9 times the particle radius, while the convex superellipsoid particles display significant orientation effects up to a center-of-mass separation distance approximately equal to 3.2 times the particle radius. In contrast to previous anisotropic, spheroidal dipole studies, these results of complex-shaped superellipsoid particles suggest that orientation effects become negligible when heat transfer is a volumetric process for all orientations. This work is essential for understanding radiative transport between particles that have non-regular geometries or that may have geometrical defects or abnormalities. Published under an exclusive license by AIP Publishing.
引用
收藏
页数:7
相关论文
共 50 条
  • [1] Near-field radiative heat transfer between clusters of dielectric nanoparticles
    Dong, J.
    Zhao, J. M.
    Liu, L. H.
    JOURNAL OF QUANTITATIVE SPECTROSCOPY & RADIATIVE TRANSFER, 2017, 197 : 114 - 122
  • [2] NEAR-FIELD RADIATIVE HEAT TRANSFER BETWEEN MATERIALS WITH DIELECTRIC COATINGS
    Fu, Ceji
    Tan, Wenchang
    MICRONANO2008-2ND INTERNATIONAL CONFERENCE ON INTEGRATION AND COMMERCIALIZATION OF MICRO AND NANOSYSTEMS, PROCEEDINGS, 2008, : 413 - 419
  • [3] Near-field radiative heat transfer between spherical micro particles
    Huang, Yong
    Liang, Xin-Gang
    Kung Cheng Je Wu Li Hsueh Pao/Journal of Engineering Thermophysics, 2004, 25 (02): : 290 - 292
  • [4] Near-field radiative heat transfer between arbitrarily shaped objects and a surface
    Edalatpour, Sheila
    Francoeur, Mathieu
    PHYSICAL REVIEW B, 2016, 94 (04)
  • [5] Near-field radiative heat transfer between irregularly shaped dielectric particles modeled with the discrete system Green's function method
    Walter, Lindsay P.
    Tervo, Eric J.
    Francoeur, Mathieu
    PHYSICAL REVIEW B, 2022, 106 (19)
  • [6] Study on Near-field Radiative Heat Transfer between Particles Based on Metasurface
    Zhang, Xinbo
    Zhang, Yong
    Yi, Hongliang
    Kung Cheng Je Wu Li Hsueh Pao/Journal of Engineering Thermophysics, 2022, 43 (07): : 1935 - 1941
  • [7] Study on near-field radiative heat transfer of spherical particles
    Han, Mao-Hua
    Liang, Xin-Gang
    Kung Cheng Je Wu Li Hsueh Pao/Journal of Engineering Thermophysics, 2007, 28 (01): : 107 - 109
  • [8] Magnetic field effects in the near-field radiative heat transfer between planar structures
    Moncada-Villa, E.
    Cuevas, J. C.
    PHYSICAL REVIEW B, 2020, 101 (08)
  • [9] Near-field radiative heat transfer between chiral metamaterials
    Cui, Longji
    Huang, Yong
    Wang, Ju
    JOURNAL OF APPLIED PHYSICS, 2012, 112 (08)
  • [10] Influence of hBN orientation on the near-field radiative heat transfer between graphene/hBN heterostructures
    Wu, Xiaohu
    Fu, Ceji
    Zhang, Zhuomin
    JOURNAL OF PHOTONICS FOR ENERGY, 2019, 9 (03)