Fabrication of Solid Oxide Fuel Cells with a Thin (La0.9Sr0.1)0.98(Ga0.8Mg0.2)O3-δ Electrolyte on a Sr0.8La0.2TiO3 Support

被引:14
|
作者
Miller, E. C. [1 ]
Gao, Z. [1 ]
Barnett, S. A. [1 ]
机构
[1] Northwestern Univ, Dept Mat Sci & Engn, Evanston, IL 60208 USA
关键词
Ceramics Processing; Electrochemical Impedance Spectroscopy; Electrode; Infiltration; Low Temperature SOFCs; LSGM; Nanostructures; Nickel; SLT; DOPED STRONTIUM-TITANATE; HIGH-PERFORMANCE; ANODE MATERIALS; POWER-DENSITY; SOFC CATHODES; CONDUCTIVITY; TEMPERATURE; EXPANSION;
D O I
10.1002/fuce.201300155
中图分类号
O646 [电化学、电解、磁化学];
学科分类号
081704 ;
摘要
This paper describes Sr0.8La0.2TiO3 (SLT)-supported solid oxide fuel cells with a thin (La0.9Sr0.1)(0.98)Ga0.8Mg0.2O3- (LSGM) electrolyte and porous LSGM anode functional layer (AFL). Optimized processing for the SLT support bisque firing, LSGM electrolyte layer co-firing, and LSGM AFL colloidal composition is presented. Cells without a functional layer yielded a power density of 228mWcm(-2) at 650 degrees C, while cells with a porous LSGM functional layer yielded a power density of 434mWcm(-2) at 650 degrees C. Cells with an AFL yielded a higher open circuit voltage, possibly due to reduced Ti diffusion into the electrolyte. Infiltration produced Ni nanoparticles within the support and AFL, which proved crucial for the electrochemical activity of the anode. Power densities increased with increasing Ni loadings, reaching 514mWcm(-2) at 650 degrees C for 5.1vol.% Ni loading. Electrochemical impedance spectroscopy analysis indicated that the cell resistance was dominated by the cathode and electrolyte resistance with the anode resistance being relatively small.
引用
收藏
页码:1060 / 1067
页数:8
相关论文
共 50 条
  • [1] Phase interaction and oxygen transport in La0.8Sr0.2Fe0.8Co0.2O3 (La0.9Sr0.1)0.98Ga0.8Mg0.2O3 composites
    Shaula, AL
    Kharton, VV
    Marques, FMB
    [J]. JOURNAL OF THE EUROPEAN CERAMIC SOCIETY, 2004, 24 (09) : 2631 - 2639
  • [2] A High Power Density Intermediate-Temperature Solid Oxide Fuel Cell with Thin (La0.9Sr0.1)0.98(Ga0.8Mg0.2)O3-δ Electrolyte and Nano-Scale Anode
    Gao, Zhan
    Miller, Elizabeth C.
    Barnett, Scott A.
    [J]. ADVANCED FUNCTIONAL MATERIALS, 2014, 24 (36) : 5703 - 5709
  • [3] Characterization of (La0.9Sr0.1)1+x(Ga0.8Mg0.2)O3-δ electrolytes with nonstoichiometric compositions
    Yamaji, K
    Xiong, YP
    Horita, T
    Sakai, N
    Yokokawa, H
    [J]. SOLID OXIDE FUEL CELLS VII (SOFC VII), 2001, 2001 (16): : 413 - 421
  • [4] La0.8Sr0.2MnO3-La0.9Sr0.1Ga0.8Mg0.2O3 composite cathodes for anode supported solid oxide fuel cells
    Armstrong, TJ
    Prouse, DW
    Virkar, AV
    [J]. IONIC AND MIXED CONDUCTING CERAMICS IV, 2002, 2001 (28): : 319 - 327
  • [5] Effect of Bi3+ Doping on the Property and Performance of the (La0.9Sr0.1)0.98Ga0.8Mg0.2O3-δ Electrolyte
    Zhou, Qiang
    Meng, Xie
    Zhan, Zhongliang
    [J]. SOLID OXIDE FUEL CELLS 13 (SOFC-XIII), 2013, 57 (01): : 1085 - 1095
  • [6] Electrochemical evaluation of La0.6Sr0.4Co0.8Fe0.2O3-δ-La0.9Sr0.1Ga0.8Mg0.2O3-δ composite cathodes for La0.9Sr0.1Ga0.8Mg0.2O3-δ electrolyte SOFCs
    Guo, Weimin
    Liu, Jiang
    Jin, Chao
    Gao, Hongbo
    Zhang, Yaohui
    [J]. JOURNAL OF ALLOYS AND COMPOUNDS, 2009, 473 (1-2) : 43 - 47
  • [7] Electron-hole transport in (La0.9Sr0.1)0.98Ga0.8Mg0.2O3-δ electrolyte:: effects of ceramic microstructure
    Kharton, VV
    Shaula, AL
    Vyshatko, NP
    Marques, FMB
    [J]. ELECTROCHIMICA ACTA, 2003, 48 (13) : 1817 - 1828
  • [8] Honeycomb-type solid oxide fuel cells using La0.9Sr0.1Ga0.8Mg0.2O3 electrolyte
    Zhong, Hao
    Matsumoto, Hiroshige
    Ishihara, Tatsumi
    Toriyama, Akira
    [J]. CHEMISTRY LETTERS, 2007, 36 (07) : 846 - 847
  • [9] Oxygen electrode characteristics of Pr2NiO4+δ-infiltrated porous (La0.9Sr0.1)(Ga0.8Mg0.2)O3-δ
    Railsback, Justin G.
    Gao, Zhan
    Barnett, Scott A.
    [J]. SOLID STATE IONICS, 2015, 274 : 134 - 139
  • [10] Limiting current oxygen sensors with La0.8Sr0.2Ga0.8Mg0.2O3-δ electrolyte and La0.8Sr0.2(Ga0.8Mg0.2)1-xCoxO3-δ dense diffusion barrier
    Xiaofang Zhang
    Tao Liu
    Huimin Zhang
    Jingkun Yu
    Hongbin Jin
    Xiangnan Wang
    Cheng Wang
    Xiang Gao
    [J]. Ionics, 2018, 24 : 827 - 832