Optimal process/solvent design for ethanol extractive fermentation with cell recycling

被引:13
|
作者
Cheng, Hou-Chieh [1 ]
Wang, Feng-Sheng [1 ]
机构
[1] Natl Chung Cheng Univ, Dept Chem Engn, Chiayi 62102, Taiwan
关键词
ethanol; fermentation; liquid-liquid extraction; optimization; solvent design; hybrid differential evolution;
D O I
10.1016/j.bej.2008.05.004
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
In this study, the computer-aided process/solvent design is introduced to find an optimal biocompatible solvent and to maximize the ethanol production rate simultaneously for the single- or double-stage extractive fermentation process with cell recycling. Such a process/solvent design problem is formulated as a mixed-integer nonlinear programming problem that is solved by mixed-integer hybrid differential evolution in order to obtain a global design. The double-stage process can use a smaller amount of fresh solvent to increase ethanol productivity compared with that of the single-stage process, but it will also decrease overall conversion. Comparing the case studies, the simultaneous process/solvent design could yield higher overall ethanol productivity than that of the process design. The maximum ethanol production rate for the double-stage extractive fermentation with cell recycling was about 10-fold higher than that of continuous fermentation and about twofold higher than that of continuous fermentation with cell recycling. (C) 2008 Elsevier B.V. All rights reserved.
引用
下载
收藏
页码:258 / 265
页数:8
相关论文
共 50 条