Probing dynamical magnetization pinning in circular dots as a function of the external magnetic field orientation

被引:19
|
作者
Kakazei, G. N. [1 ,2 ]
Aranda, G. R. [3 ]
Bunyaev, S. A. [1 ,2 ]
Golub, V. O. [4 ]
Tartakovskaya, E. V. [4 ]
Chumak, A. V. [5 ,7 ]
Serga, A. A. [5 ,7 ]
Hillebrands, B. [5 ,7 ]
Guslienko, K. Y. [3 ,6 ]
机构
[1] Univ Porto, IFIMUP IN Inst Nanosci & Nanotechnol, P-4169007 Oporto, Portugal
[2] Univ Porto, Dept Fis, P-4169007 Oporto, Portugal
[3] Univ Pais Vasco UPV EHU, Dept Fis Mat, San Sebastian 20018, Spain
[4] Natl Acad Sci Ukraine, Inst Magnetism, UA-03142 Kiev, Ukraine
[5] Tech Univ Kaiserslautern, Fachbereich Phys, D-67663 Kaiserslautern, Germany
[6] Basque Fdn Sci, IKERBASQUE, Bilbao 48011, Spain
[7] Tech Univ Kaiserslautern, Forschungszentrum OPTIMAS, D-67663 Kaiserslautern, Germany
来源
PHYSICAL REVIEW B | 2012年 / 86卷 / 05期
关键词
SPIN-WAVE RESONANCE; FERROMAGNETIC-RESONANCE; ARRAYS; MODES; ANISOTROPIES; INPLANE; FILMS;
D O I
10.1103/PhysRevB.86.054419
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
We performed ferromagnetic resonance measurements of square arrays of noninteracting Permalloy circular dots for different orientations of external magnetic field with respect to the patterned film plane (theta). Out-of-plane angular dependence of the main resonance peak was measured in the whole range of the field angles 0 degrees <= theta <= 90 degrees. The main eigenmodespatial distribution is strongly nonuniform due to the dot nonellipsoidal shape. Nevertheless, for dots with small aspect ratio b = L/R <= 0.1 (where R is dot radius and L is dot thickness) Kittel's equation, assuming uniform dynamic magnetization (no pinning at the dot lateral edges), describes the peak position with high accuracy. Analytical calculations and micromagnetic simulations confirmed the gradual evolution of the main mode profile and a smooth transition from the strong to relatively weak pinning conditions with the change of external magnetic field angle.
引用
收藏
页数:7
相关论文
共 50 条
  • [1] Flux pinning by magnetic dots with in-plane magnetization
    Van Bael, MJ
    Temst, K
    Van Look, L
    Bekaert, J
    Moshchalkov, VV
    Bruynseraede, Y
    [J]. PHYSICA B, 2000, 284 : 893 - 894
  • [2] Breaking the Orientation Pinning Limit Using an External Field
    Mengcheng Zhou
    Xin Ba
    Xinfang Zhang
    [J]. Metallurgical and Materials Transactions A, 2020, 51 : 1481 - 1486
  • [3] Breaking the Orientation Pinning Limit Using an External Field
    Zhou, Mengcheng
    Ba, Xin
    Zhang, Xinfang
    [J]. METALLURGICAL AND MATERIALS TRANSACTIONS A-PHYSICAL METALLURGY AND MATERIALS SCIENCE, 2020, 51 (04): : 1481 - 1486
  • [4] Spin reversal in small magnetic elements as a function of orientation in external magnetic field
    Oriade, AA
    Chui, ST
    [J]. JOURNAL OF APPLIED PHYSICS, 2005, 97 (02)
  • [5] Local visualization of asymmetric flux pinning by magnetic dots with perpendicular magnetization
    Van Bael, MJ
    Lange, M
    Raedts, S
    Moshchalkov, VV
    Grigorenko, AN
    Bending, SJ
    [J]. PHYSICAL REVIEW B, 2003, 68 (01):
  • [6] MFM study of magnetic vortex cores in circular permalloy dots: behavior in external field
    Okuno, T
    Shigeto, K
    Ono, T
    Mibu, K
    Shinjo, T
    [J]. JOURNAL OF MAGNETISM AND MAGNETIC MATERIALS, 2002, 240 (1-3) : 1 - 6
  • [7] Magnetization of activated sludge by an external magnetic field
    Shuichiro Hattori
    Masanori Watanabe
    Ken Sasaki
    Hidaka Yasuharu
    [J]. Biotechnology Letters, 2002, 24 : 65 - 69
  • [8] Magnetization of activated sludge by an external magnetic field
    Hattori, S
    Watanabe, M
    Sasaki, K
    Yasuharu, H
    [J]. BIOTECHNOLOGY LETTERS, 2002, 24 (01) : 65 - 69
  • [9] Enhanced pinning of superconducting vortices at circular magnetic dots in the magnetic-vortex state
    Shapoval, T.
    Metlushko, V.
    Wolf, M.
    Neu, V.
    Holzapfel, B.
    Schultz, L.
    [J]. PHYSICA C-SUPERCONDUCTIVITY AND ITS APPLICATIONS, 2010, 470 (19): : 867 - 870
  • [10] Probing the energy barriers in nonuniform magnetization states of circular dots by broadband ferromagnetic resonance
    Melkov, G. A.
    Kobljanskyj, Y.
    Novosad, V.
    Slavin, A. N.
    Guslienko, K. Y.
    [J]. PHYSICAL REVIEW B, 2013, 88 (22):