Quantitative Imaging features Improve Discrimination of Malignancy in Pulmonary nodules

被引:39
|
作者
Balagurunathan, Yoganand [1 ,2 ,3 ]
Schabath, Matthew B. [4 ]
Wang, Hua [5 ,6 ]
Liu, Ying [5 ,6 ]
Gillies, Robert J. [2 ,5 ]
机构
[1] H Lee Moffitt Canc Ctr & Res Inst, Quantitat Sci Dept Bioinformat & Biostat, Tampa, FL 33612 USA
[2] H Lee Moffitt Canc Ctr & Res Inst, Dept Radiol, Tampa, FL 33612 USA
[3] H Lee Moffitt Canc Ctr & Res Inst, Genitourinary Oncol, Tampa, FL 33612 USA
[4] H Lee Moffitt Canc Ctr & Res Inst, Canc Epidemiol, Tampa, FL USA
[5] H Lee Moffitt Canc Ctr & Res Inst, Canc Physiol, Tampa, FL USA
[6] Tianjin Med Univ Canc Inst & Hosp, Dept Radiol, Tianjin, Peoples R China
关键词
LUNG SCREENING TRIAL; PREDICTION MODEL; CANCER RISK; BASE-LINE; CT; REPRODUCIBILITY; DIAGNOSIS; SEGMENTATION; PROBABILITY; VARIABILITY;
D O I
10.1038/s41598-019-44562-z
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Pulmonary nodules are frequently detected radiological abnormalities in lung cancer screening. Nodules of the highest- and lowest-risk for cancer are often easily diagnosed by a trained radiologist there is still a high rate of indeterminate pulmonary nodules (IPN) of unknown risk. Here, we test the hypothesis that computer extracted quantitative features ("radiomics") can provide improved risk-assessment in the diagnostic setting. Nodules were segmented in 3D and 219 quantitative features are extracted from these volumes. Using these features novel malignancy risk predictors are formed with various stratifications based on size, shape and texture feature categories. We used images and data from the National Lung Screening Trial (NLST), curated a subset of 479 participants (244 for training and 235 for testing) that included incident lung cancers and nodule-positive controls. After removing redundant and non-reproducible features, optimal linear classifiers with area under the receiver operator characteristics (AUROC) curves were used with an exhaustive search approach to find a discriminant set of image features, which were validated in an independent test dataset. We identified several strong predictive models, using size and shape features the highest AUROC was 0.80. Using non-size based features the highest AUROC was 0.85. Combining features from all the categories, the highest AUROC were 0.83.
引用
收藏
页数:14
相关论文
共 50 条
  • [1] Quantitative Imaging features Improve Discrimination of Malignancy in Pulmonary nodules
    Yoganand Balagurunathan
    Matthew B. Schabath
    Hua Wang
    Ying Liu
    Robert J. Gillies
    Scientific Reports, 9
  • [2] Rheumatoid pulmonary nodules: clinical and imaging features compared with malignancy
    Koslow, Matthew
    Young, Jason R.
    Yi, Eunhee S.
    Baqir, Misbah
    Decker, Paul A.
    Johnson, Geoffrey B.
    Ryu, Jay H.
    EUROPEAN RADIOLOGY, 2019, 29 (04) : 1684 - 1692
  • [3] Rheumatoid pulmonary nodules: clinical and imaging features compared with malignancy
    Matthew Koslow
    Jason R. Young
    Eunhee S. Yi
    Misbah Baqir
    Paul A. Decker
    Geoffrey B. Johnson
    Jay H. Ryu
    European Radiology, 2019, 29 : 1684 - 1692
  • [4] Predicting malignancy in indeterminate pulmonary nodules using quantitative CT imaging
    Bloch, Kate M.
    Shi, Xingyi
    Duan, Fenghai
    Washko, George R.
    Spira, Avrum
    Aberle, Denise R.
    Estepar, Raul S.
    Billatos, Ehab
    Lenburg, Marc E.
    CANCER RESEARCH, 2022, 82 (12)
  • [5] Improving malignancy risk prediction of indeterminate pulmonary nodules with imaging features and biomarkers
    Marmor, Hannah N.
    Jackson, Laurel
    Gawel, Susan
    Kammer, Michael
    Massion, Pierre P.
    Grogan, Eric L.
    Davis, Gerard J.
    Deppen, Stephen A.
    CLINICA CHIMICA ACTA, 2022, 534 : 106 - 114
  • [6] Clinical and Imaging Features Distinguish Rheumatoid Pulmonary Nodules From Malignancy in Rheumatoid Patients
    Koslow, Matthew
    Young, Jason R.
    Baqir, Misbah
    Yi, Joanne E.
    Johnson, Geoffrey
    Ryu, Jay
    CHEST, 2017, 152 (04) : 752A - 752A
  • [7] Quantitative CT analysis of lung parenchyma to improve malignancy risk estimation in incidental pulmonary nodules
    Peters, Alan A.
    Weinheimer, Oliver
    von Stackelberg, Oyunbileg
    Kroschke, Jonas
    Piskorski, Lars
    Debic, Manuel
    Schlamp, Kai
    Welzel, Linn
    Pohl, Moritz
    Christe, Andreas
    Ebner, Lukas
    Kauczor, Hans-Ulrich
    Heussel, Claus Peter
    Wielpuetz, Mark O.
    EUROPEAN RADIOLOGY, 2023, 33 (06) : 3908 - 3917
  • [8] Quantitative CT analysis of lung parenchyma to improve malignancy risk estimation in incidental pulmonary nodules
    Alan A. Peters
    Oliver Weinheimer
    Oyunbileg von Stackelberg
    Jonas Kroschke
    Lars Piskorski
    Manuel Debic
    Kai Schlamp
    Linn Welzel
    Moritz Pohl
    Andreas Christe
    Lukas Ebner
    Hans-Ulrich Kauczor
    Claus Peter Heußel
    Mark O. Wielpütz
    European Radiology, 2023, 33 : 3908 - 3917
  • [9] PULMONARY NODULES: ASSESSING THE REPEATABILITY OF IMAGING BIOMARKERS OF MALIGNANCY
    Talwar, A.
    Willaime, J. M. Y.
    Pickup, L. C.
    Enescu, M.
    Boukerroui, D.
    Hickes, W.
    Gooding, M. J.
    Rahman, N. M.
    Kadir, T.
    Gleeson, F. V.
    THORAX, 2016, 71 : A94 - A95
  • [10] Rheumatoid Pulmonary Nodules: Clinical And Imaging Features
    Koslow, M.
    Young, J.
    Yi, J.
    Baqir, M.
    Johnson, G.
    Ryu, J.
    AMERICAN JOURNAL OF RESPIRATORY AND CRITICAL CARE MEDICINE, 2017, 195