The Fermi-Pasta-Ulam-Tsingou recurrence for discrete systems: Cascading mechanism and machine learning for the Ablowitz-Ladik equation

被引:10
|
作者
Yin, H. M. [1 ]
Pan, Q. [1 ]
Chow, K. W. [1 ]
机构
[1] Univ Hong Kong, Dept Mech Engn, Pokfulam, Hong Kong, Peoples R China
关键词
Ablowitz-Ladik equation; Cascading instability; Data driven and machine learning; Fermi-Pasta-Ulam-Tsingou recurrence; NONLINEAR SCHRODINGER-EQUATION; NEURAL-NETWORKS; WAVES;
D O I
10.1016/j.cnsns.2022.106664
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The Fermi-Pasta-Ulam-Tsingou recurrence phenomenon for the Ablowitz-Ladik equation is studied analytically and computationally. Wave profiles periodic in the discrete coordinate may return to the initial states after complex stages of evolution. Theoretically this dynamics is interpreted through a cascading mechanism where higher order harmonics exponentially small initially grow at a faster rate than the fundamental mode. A breather is formed when all modes attain roughly the same magnitude. Numerically a fourth-order Runge-Kutta method is implemented to reproduce this recurring pattern. In another illuminating perspective, we employ data driven and machine learning techniques, e.g. back propagation, hidden physics and physics-informed neural networks. Using data from a fixed time as a learning basis, doubly periodic solutions in both the defocusing and focusing regimes are obtained. The predictions by neural networks are in excellent agreement with those from numerical simulations and analytical solutions. (C) 2022 Elsevier B.V. All rights reserved.
引用
收藏
页数:13
相关论文
共 24 条
  • [1] The β Fermi-Pasta-Ulam-Tsingou recurrence problem
    Pace, Salvatore D.
    Reiss, Kevin A.
    Campbell, David K.
    CHAOS, 2019, 29 (11)
  • [2] Fermi-Pasta-Ulam-Tsingou recurrence and cascading mechanism for resonant three-wave interactions
    Yin, H. M.
    Chow, K. W.
    PHYSICAL REVIEW E, 2023, 107 (06)
  • [3] Recurrence recovery in heterogeneous Fermi-Pasta-Ulam-Tsingou systems
    Li, Zidu
    Porter, Mason A.
    Choubey, Bhaskar
    CHAOS, 2023, 33 (09)
  • [4] Vortex revivals and Fermi-Pasta-Ulam-Tsingou recurrence
    Paredes, Angel
    Blanco-Labrador, Jose
    Olivieri, David N.
    Salgueiro, Jose R.
    Michinel, Humberto
    PHYSICAL REVIEW E, 2019, 99 (06)
  • [5] Exact discrete resonances in the Fermi-Pasta-Ulam-Tsingou system
    Bustamante, M. D.
    Hutchinson, K.
    Lvov, Y. V.
    Onorato, M.
    COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2019, 73 : 437 - 471
  • [6] Fermi-Pasta-Ulam-Tsingou recurrence in spatial optical dynamics
    Pierangeli, D.
    Flammini, M.
    Zhang, L.
    Marcucci, G.
    Agranat, A. J.
    Grinevich, P. G.
    Santini, P. M.
    Conti, C.
    DelRe, E.
    2019 CONFERENCE ON LASERS AND ELECTRO-OPTICS EUROPE & EUROPEAN QUANTUM ELECTRONICS CONFERENCE (CLEO/EUROPE-EQEC), 2019,
  • [7] Periodic orbits in Fermi-Pasta-Ulam-Tsingou systems
    Karve, Nachiket
    Rose, Nathan
    Campbell, David
    CHAOS, 2024, 34 (09)
  • [8] Discrete breathers in a triangular β-Fermi-Pasta-Ulam-Tsingou lattice
    Babicheva, Rita, I
    Semenov, Alexander S.
    Soboleva, Elvira G.
    Kudreyko, Aleksey A.
    Zhou, Kun
    Dmitriev, Sergey, V
    PHYSICAL REVIEW E, 2021, 103 (05)
  • [9] Observation of Fermi-Pasta-Ulam-Tsingou Recurrence and Its Exact Dynamics
    Pierangeli, D.
    Flammini, M.
    Zhang, L.
    Marcucci, G.
    Agranat, A. J.
    Grinevich, P. G.
    Santini, P. M.
    Conti, C.
    DelRe, E.
    PHYSICAL REVIEW X, 2018, 8 (04):
  • [10] Fermi-Pasta-Ulam-Tsingou recurrence in two-core optical fibers
    Li, J. H.
    Yin, H. M.
    Chiang, K. S.
    Chow, K. W.
    PHYSICA D-NONLINEAR PHENOMENA, 2022, 441