Field-Induced Percolation of Polar Nanoregions in Relaxor Ferroelectrics

被引:90
|
作者
Prosandeev, S. [1 ,2 ,3 ,4 ]
Wang, Dawei [5 ,6 ]
Akbarzadeh, A. R. [7 ]
Dkhil, B. [8 ]
Bellaiche, L. [1 ]
机构
[1] Univ Arkansas, Dept Phys, Fayetteville, AR 72701 USA
[2] Univ Arkansas, Inst Nanosci & Engn, Fayetteville, AR 72701 USA
[3] South Fed Univ, Dept Phys, Rostov Na Donu, Russia
[4] South Fed Univ, Inst Phys, Rostov Na Donu, Russia
[5] Xi An Jiao Tong Univ, Elect Mat Res Lab, Minist Educ, Key Lab, Xian 710049, Peoples R China
[6] Xi An Jiao Tong Univ, Int Ctr Dielect Res, Xian 710049, Peoples R China
[7] Rice Univ, Wiess Sch Nat Sci, Houston, TX 77005 USA
[8] Ecole Cent Paris, Lab Struct Proprietes & Modelisat Solides, CNRS, UMR 8580, F-92295 Chatenay Malabry, France
基金
美国国家科学基金会; 中国国家自然科学基金; 俄罗斯基础研究基金会;
关键词
TEMPERATURE PROPERTIES; DIELECTRIC RESPONSE; PHASE-TRANSITIONS; SOLID-SOLUTIONS; ELECTRIC-FIELD; POLARIZATION; STATES; RELAXATION; VISCOSITY; DYNAMICS;
D O I
10.1103/PhysRevLett.110.207601
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
A first-principles-based effective Hamiltonian is used to investigate low-temperature properties of Ba(Zr, Ti)O-3 relaxor ferroelectrics under an increasing dc electric field. This system progressively develops an electric polarization that is highly nonlinear with the dc field. This development leads to a maximum of the static dielectric response at a critical field, Eth, and involves four different field regimes. Each of these regimes is associated with its own behavior of polar nanoregions, such as shrinking, flipping, and elongation of dipoles or change in morphology. The clusters propagating inside the whole sample, with dipoles being parallel to the field direction, begin to form at precisely the Eth critical field. Such a result, and further analysis we perform, therefore, reveal that field-induced percolation of polar nanoregions is the driving mechanism for the transition from the relaxor to ferroelectric state.
引用
收藏
页数:5
相关论文
共 50 条
  • [1] Origin of polar nanoregions and relaxor properties of ferroelectrics
    Polinger, Victor
    Bersuker, Isaac B.
    PHYSICAL REVIEW B, 2018, 98 (21)
  • [2] Hysteresis Phenomena in Relaxor Ferroelectrics: Consideration of Polar Nanoregions
    Starkov, Alexander S.
    Starkov, Ivan A.
    Dedyk, Antonina I.
    Suchaneck, Gunnar
    Gerlach, Gerald
    PHYSICA STATUS SOLIDI B-BASIC SOLID STATE PHYSICS, 2018, 255 (02):
  • [3] Polarization dynamics and formation of polar nanoregions in relaxor ferroelectrics
    Vugmeister, B. E.
    PHYSICAL REVIEW B, 2006, 73 (17)
  • [4] Anisotropic dielectric function in polar nanoregions of relaxor ferroelectrics
    Hlinka, J
    Ostapchuk, T
    Noujni, D
    Kamba, S
    Petzelt, J
    PHYSICAL REVIEW LETTERS, 2006, 96 (02)
  • [5] Polar nanoregions and diffuse scattering in relaxor ferroelectrics.
    Welberry, T. R.
    Pasciak, M.
    ACTA CRYSTALLOGRAPHICA A-FOUNDATION AND ADVANCES, 2013, 69 : S621 - S621
  • [6] Field-Induced Phase Transitions in Relaxor Ferroelectrics
    Schmidt, V. Hugo
    Chien, R. R.
    Tu, Chi-Shun
    FERROELECTRICS, 2010, 400 : 402 - 409
  • [7] Effect of polar nanoregions on giant electrostriction and piezoelectricity in relaxor ferroelectrics
    Pirc, R
    Blinc, R
    Vikhnin, VS
    PHYSICAL REVIEW B, 2004, 69 (21): : 212105 - 1
  • [8] Polar nanoregions and single crystal diffuse scattering in relaxor ferroelectrics
    Welberry, Richard
    ACTA CRYSTALLOGRAPHICA A-FOUNDATION AND ADVANCES, 2017, 73 : A10 - A10
  • [9] Analysis on dielectric response of polar nanoregions in paraelectric phase of relaxor ferroelectrics
    Wei, Xiaoyong
    Yao, Xi
    JOURNAL OF APPLIED PHYSICS, 2006, 100 (06)
  • [10] Correlations between nanoscale chemical and polar order in relaxor ferroelectrics and the lengthscale for polar nanoregions
    Burton, BP
    Cockayne, E
    Waghmare, UV
    PHYSICAL REVIEW B, 2005, 72 (06):