A Multi-Temporal Network for Improving Semantic Segmentation of Large-Scale Landsat Imagery

被引:4
|
作者
Yang, Xuan [1 ]
Zhang, Bing [1 ,2 ]
Chen, Zhengchao [3 ]
Bai, Yongqing [3 ]
Chen, Pan [1 ,2 ]
机构
[1] Chinese Acad Sci, Aerosp Informat Res Inst, Key Lab Digital Earth Sci, Beijing 100094, Peoples R China
[2] Univ Chinese Acad Sci, Beijing 100049, Peoples R China
[3] Chinese Acad Sci, Airborne Remote Sensing Ctr, Aerosp Informat Res Inst, Beijing 100094, Peoples R China
关键词
deep learning; semantic segmentation; multi-temporal; large-scale; chained deduced classification strategy; Landsat; INFORMATION EXTRACTION; CLASSIFICATION;
D O I
10.3390/rs14195062
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
With the development of deep learning, semantic segmentation technology has gradually become the mainstream technical method in large-scale multi-temporal landcover classification. Large-scale and multi-temporal are the two significant characteristics of Landsat imagery. However, the mainstream single-temporal semantic segmentation network lacks the constraints and assistance of pre-temporal information, resulting in unstable results, poor generalization ability, and inconsistency with the actual situation in the multi-temporal classification results. In this paper, we propose a multi-temporal network that introduces pre-temporal information as prior constrained auxiliary knowledge. We propose an element-wise weighting block module to improve the fine-grainedness of feature optimization. We propose a chained deduced classification strategy to improve multi-temporal classification's stability and generalization ability. We label the large-scale multi-temporal Landsat landcover classification dataset with an overall classification accuracy of over 90%. Through extensive experiments, compared with the mainstream semantic segmentation methods, our proposed multi-temporal network achieves state-of-the-art performance with good robustness and generalization ability.
引用
收藏
页数:38
相关论文
共 50 条
  • [1] A Prior Semantic Network for Large-Scale Landcover Change of Landsat Imagery
    Yang, Xuan
    Bai, Yongqing
    Chen, Pan
    Li, Cong
    Lu, Kaixuan
    Chen, Zhengchao
    SUSTAINABILITY, 2022, 14 (20)
  • [2] Multi-temporal remote sensing imagery semantic segmentation color consistency adversarial network
    Li X.
    Zhang L.
    Wang Q.
    Ai H.
    Cehui Xuebao/Acta Geodaetica et Cartographica Sinica, 2020, 49 (11): : 1473 - 1484
  • [3] Semantic segmentation for simultaneous crop and land cover land use classification using multi-temporal Landsat imagery
    Ebrahimi, Saman
    Kumar, Saurav
    REMOTE SENSING APPLICATIONS-SOCIETY AND ENVIRONMENT, 2025, 37
  • [4] Habitat metrics based on multi-temporal Landsat imagery for mapping large mammal habitat
    Oeser, Julian
    Heurich, Marco
    Senf, Cornelius
    Pflugmacher, Dirk
    Belotti, Elisa
    Kuemmerle, Tobias
    REMOTE SENSING IN ECOLOGY AND CONSERVATION, 2020, 6 (01) : 52 - 69
  • [5] PADDOCK SEGMENTATION USING MULTI-TEMPORAL SATELLITE IMAGERY
    North, H. C.
    Pairman, D.
    Belliss, S. E.
    2014 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS), 2014, : 1596 - 1599
  • [6] Monitoring of changes in woodlots outside forests by multi-temporal Landsat imagery
    Rahman, M. Mahmudur
    Islam, M. Shafiqul
    Pramanik, M. Abu Taleb
    IFOREST-BIOGEOSCIENCES AND FORESTRY, 2018, 11 : 162 - 170
  • [7] Application of multi-temporal Landsat 5 TM imagery for wetland identification
    Lunetta, RS
    Balogh, ME
    PHOTOGRAMMETRIC ENGINEERING AND REMOTE SENSING, 1999, 65 (11): : 1303 - 1310
  • [8] Large-Scale Unsupervised Semantic Segmentation
    Gao, Shanghua
    Li, Zhong-Yu
    Yang, Ming-Hsuan
    Cheng, Ming-Ming
    Han, Junwei
    Torr, Philip
    IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2023, 45 (06) : 7457 - 7476
  • [9] Dynamic Mapping of Paddy Rice Using Multi-Temporal Landsat Data Based on a Deep Semantic Segmentation Model
    Du, Meiqi
    Huang, Jingfeng
    Wei, Pengliang
    Yang, Lingbo
    Chai, Dengfeng
    Peng, Dailiang
    Sha, Jinming
    Sun, Weiwei
    Huang, Ran
    AGRONOMY-BASEL, 2022, 12 (07):
  • [10] Inversion of large-scale citrus soil moisture using multi-temporal Sentinel-1 and Landsat-8 data
    Wu, Zongjun
    Cui, Ningbo
    Zhang, Wenjiang
    Gong, Daozhi
    Liu, Chunwei
    Liu, Quanshan
    Zheng, Shunsheng
    Wang, Zhihui
    Zhao, Lu
    Yang, Yenan
    AGRICULTURAL WATER MANAGEMENT, 2024, 294