Experimental investigation of temperature distribution of planar solid oxide fuel cell: Effects of gas flow, power generation, and direct internal reforming

被引:25
|
作者
Sugihara, Shinichi [1 ,2 ]
Iwai, Hiroshi [3 ]
机构
[1] Kyoto Univ, Dept Aeronaut & Astronaut, Kyoto 6158540, Japan
[2] DENSO CORP, Adv Energy Syst R&D Div, Kariya, Aichi 4488661, Japan
[3] Kyoto Univ, Dept Mech Engn & Sci, Kyoto 6158540, Japan
关键词
Planar solid oxide fuel cell; Direct internal reforming; In situ temperature measurement; Coflow; Counterflow; Anode-supported cell; RADIATION HEAT-TRANSFER; 3-D MODEL; SOFC; PERFORMANCE; SYSTEM;
D O I
10.1016/j.ijhydene.2020.06.033
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The temperature distribution of an operating planar solid oxide fuel cell (SOFC) is experimentally investigated under direct internal reforming conditions. An in situ measurement is conducted using a cell holder and an infrared (IR) camera. The effects of the gas flow configuration, exothermic power generation reaction, and endothermic steam-methane reforming reaction are examined at a furnace temperature of 770 degrees C. The fuel flow and airflow are set to a coflow or counterflow configuration. The heat generation and absorption by the reactions are varied by tuning the average current density and the concentration of methane in the supplied fuel. The maximum value of the local temperature gradient along the cell tends to increase with increasing internal reforming ratio, regardless of the gas flow configuration. From the view point of a small temperature gradient, the counterflow configuration clearly shows better characteristics than that of the coflow, regardless of the internal reforming ratio. (c) 2020 Hydrogen Energy Publications LLC. Published by Elsevier Ltd. All rights reserved.
引用
收藏
页码:25227 / 25239
页数:13
相关论文
共 50 条
  • [1] Measurement of transient temperature distribution behavior of a planar solid oxide fuel cell: Effect of instantaneous switching of power generation and direct internal reforming
    Sugihara, Shinichi
    Iwai, Hiroshi
    JOURNAL OF POWER SOURCES, 2021, 482
  • [2] Experimental investigation of temperature distribution over a planar solid oxide fuel cell
    Razbani, Omid
    Waernhus, Ivar
    Assadi, Mohsen
    APPLIED ENERGY, 2013, 105 : 155 - 160
  • [3] Numerical investigation of the chemical and electrochemical characteristics of planar solid oxide fuel cell with direct internal reforming
    Wang Y.
    Weng S.
    Weng Y.
    Frontiers in Energy, 2011, 5 (2) : 195 - 206
  • [4] Experimental investigation of direct internal reforming of biogas in solid oxide fuel cells
    Lanzini, Andrea
    Leone, Pierluigi
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2010, 35 (06) : 2463 - 2476
  • [5] Efficiency Analysis of Planar Solid Oxide Fuel Cell at Direct Internal Reforming Conditions
    Janardhanan, Vinod M.
    Deutschmann, Olaf
    SOLID OXIDE FUEL CELLS 10 (SOFC-X), PTS 1 AND 2, 2007, 7 (01): : 1939 - 1943
  • [6] Numerical simulation of intermediate-temperature direct-internal-reforming planar solid oxide fuel cell
    Iwai, H.
    Yamamoto, Y.
    Saito, M.
    Yoshida, H.
    ENERGY, 2011, 36 (04) : 2225 - 2234
  • [7] Modeling and simulation of high temperature direct internal reforming solid oxide fuel cell
    Wang, Li-Jin
    Zhang, Hui-Sheng
    Weng, Shi-Lie
    Zhongguo Dianji Gongcheng Xuebao/Proceedings of the Chinese Society of Electrical Engineering, 2007, 27 (35): : 78 - 83
  • [8] Power generation characteristics of solid oxide fuel cell with internal steam reforming of methane
    Eguchi, K
    Kunisa, Y
    Kayano, M
    Sekizawa, K
    Yano, S
    Arai, H
    DENKI KAGAKU, 1996, 64 (06): : 596 - 601
  • [9] TRANSIENT MODELING OF DIRECT INTERNAL REFORMING PLANAR SOLID OXIDE FUEL CELLS
    Colpan, C. Ozgur
    Dincer, Ibrahim
    Hamdullahpur, Feridun
    HT2008: PROCEEDING OF THE ASME SUMMER HEAT TRANSFER CONFERENCE, VOL 3, 2009, : 605 - 612
  • [10] Direct ethanol solid oxide fuel cells integrated with internal reforming for renewable power generation
    Liu, Fangsheng
    Gao, Yi
    Li, Jiajie
    Wei, Tao
    Ye, Zhengmao
    Zhang, Tongjian
    Dong, Dehua
    Wang, Zhi
    SEPARATION AND PURIFICATION TECHNOLOGY, 2022, 298