ASYMPTOTICS FOR REDESCENDING M-ESTIMATORS IN LINEAR MODELS WITH INCREASING DIMENSION

被引:2
|
作者
Smucler, Ezequiel [1 ]
机构
[1] Univ Buenos Aires, CONICET, Ciudad Univ,Pabellon 2, RA-1426 Buenos Aires, DF, Argentina
关键词
Dimension asymptotics; M-estimators; MM-estimators; robust regression; S-estimators; P-REGRESSION PARAMETERS; ROBUST REGRESSION; LIMITING BEHAVIOR; DIVERGING NUMBER; COEFFICIENTS; EFFICIENCY; P2/N;
D O I
10.5705/ss.202016.0549
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
This paper deals with the asymptotic statistical properties of a class of redescending M-estimators in linear models with increasing dimension. This class is large enough to include popular high breakdown point estimators such as S-estimators and MM-estimators, which were not covered by existing results in the literature. We prove consistency assuming only that p/n -> 0 and asymptotic normality essentially if p(3)/n -> 0, where p is the number of covariates and n is the sample size.
引用
收藏
页码:1065 / 1081
页数:17
相关论文
共 50 条
  • [1] Redescending M-estimators
    Shevlyakov, Georgy
    Morgenthaler, Stephan
    Shurygin, Alexander
    [J]. JOURNAL OF STATISTICAL PLANNING AND INFERENCE, 2008, 138 (10) : 2906 - 2917
  • [2] Regression clustering with redescending M-estimators
    Garlipp, T
    Müller, CH
    [J]. INNOVATIONS IN CLASSIFICATION, DATA SCIENCE, AND INFORMATION SYSTEMS, 2005, : 38 - 45
  • [3] Asymptotics of M-estimators in two-phase linear regression models
    Koul, HL
    Qian, LF
    Surgailis, D
    [J]. STOCHASTIC PROCESSES AND THEIR APPLICATIONS, 2003, 103 (01) : 123 - 154
  • [4] Enhancing performance in the presence of outliers with redescending M-estimators
    Raza, Aamir
    Talib, Mashal
    Noor-ul-Amin, Muhammad
    Gunaime, Nevine
    Boukhris, Imed
    Nabi, Muhammad
    [J]. SCIENTIFIC REPORTS, 2024, 14 (01):
  • [5] Stable Asymptotics for M-estimators
    La Vecchia, Davide
    [J]. INTERNATIONAL STATISTICAL REVIEW, 2016, 84 (02) : 267 - 290
  • [6] Unimodality and the asymptotics of M-estimators
    Hallin, M
    [J]. L(1)-STATISTICAL PROCEDURES AND RELATED TOPICS, 1997, 31 : 47 - 56
  • [7] THE CHANGE-OF-VARIANCE CURVE AND OPTIMAL REDESCENDING M-ESTIMATORS
    HAMPEL, FR
    ROUSSEEUW, PJ
    RONCHETTI, E
    [J]. JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 1981, 76 (375) : 643 - 648
  • [8] Asymptotics of self-weighted M-estimators for autoregressive models
    Wang, Xinghui
    Hu, Shuhe
    [J]. METRIKA, 2017, 80 (01) : 83 - 92
  • [9] Asymptotics of self-weighted M-estimators for autoregressive models
    Xinghui Wang
    Shuhe Hu
    [J]. Metrika, 2017, 80 : 83 - 92
  • [10] On the asymptotics of constrained local M-estimators
    Shapiro, A
    [J]. ANNALS OF STATISTICS, 2000, 28 (03): : 948 - 960