Enhanced symplectic characteristics mode decomposition method and its application in fault diagnosis of rolling bearing

被引:19
|
作者
Cheng, Zhengyang [1 ]
Wang, Rongji [1 ]
机构
[1] Cent South Univ Forestry & Technol, Coll Mech & Elect Engn, Changsha 410004, Hunan, Peoples R China
关键词
Enhanced symplectic characteristics mode decomposition; Feature enhancement; Eigenvalue decomposition; Calculus operator; FEATURE-EXTRACTION; TRANSFORM; SIGNALS; SVD;
D O I
10.1016/j.measurement.2020.108108
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
As an adaptive signal decomposition method, symplectic geometry mode decomposition (SGMD) method is suitable for dealing with non-stationary signals However, the decomposition effect is not ideal when dealing with rolling bearing fault signals with strong background noise. On the one hand, this noise reduction method of SGMD is not suitable for fault signals with strong background noise. On the other hand, SGMD uses QR decomposition method, which results in decomposition error diffusion in the decomposition of singular matrix. Therefore, an enhanced symplectic characteristics mode decomposition (ESCMD) method is proposed in this paper. ESCMD enhances fault features through the calculus operator to make fault features easier to extract, and replaces QR decomposition with eigenvalue decomposition (EVD) to avoid error diffusion during matrix decomposition. Emulational and experimental results show that ESCMD has excellent noise robustness and feature enhancement performance. (C) 2020 Published by Elsevier Ltd.
引用
下载
收藏
页数:16
相关论文
共 50 条
  • [1] Symplectic period mode decomposition method and its application in fault diagnosis of rolling bearing
    Cheng, Jian
    Yang, Yu
    Shao, Haidong
    Cheng, Junsheng
    JOURNAL OF VIBRATION AND CONTROL, 2024, 30 (9-10) : 1889 - 1911
  • [2] Symplectic Sparsest Mode Decomposition and Its Application in Rolling Bearing Fault Diagnosis
    Liu, Yanfei
    Cheng, Junsheng
    Yang, Yu
    Zheng, Jinde
    Pan, Haiyang
    Yang, Xingkai
    Bin, Guangfu
    Shen, Yiping
    IEEE SENSORS JOURNAL, 2024, 24 (08) : 12756 - 12769
  • [3] Enhanced Ramanujan Mode Decomposition Method and Its Application to Rolling Bearing Fault Diagnosis
    Cheng J.
    Cheng J.
    Li X.
    Shao H.
    Yang Y.
    Jixie Gongcheng Xuebao/Journal of Mechanical Engineering, 2022, 58 (19): : 130 - 138
  • [4] The Partial Reconstruction Symplectic Geometry Mode Decomposition and Its Application in Rolling Bearing Fault Diagnosis
    Liu, Yanfei
    Cheng, Junsheng
    Yang, Yu
    Bin, Guangfu
    Shen, Yiping
    Peng, Yanfeng
    SENSORS, 2023, 23 (17)
  • [5] Variational mode decomposition method and its application on incipient fault diagnosis of rolling bearing
    Tang G.-J.
    Wang X.-L.
    Wang, Xiao-Long (wangxiaolong0312@126.com), 1600, Nanjing University of Aeronautics an Astronautics (29): : 638 - 648
  • [6] A Fast and Adaptive Empirical Mode Decomposition Method and Its Application in Rolling Bearing Fault Diagnosis
    Li, Yun
    Zhou, Jiwen
    Li, Hongguang
    Meng, Guang
    Bian, Jie
    IEEE SENSORS JOURNAL, 2023, 23 (01) : 567 - 576
  • [7] Multivariate empirical mode decomposition and its application to fault diagnosis of rolling bearing
    Lv, Yong
    Yuan, Rui
    Song, Gangbing
    MECHANICAL SYSTEMS AND SIGNAL PROCESSING, 2016, 81 : 219 - 234
  • [8] Adaptive periodic mode decomposition and its application in rolling bearing fault diagnosis
    Cheng, Jian
    Yang, Yu
    Li, Xin
    Cheng, Junsheng
    MECHANICAL SYSTEMS AND SIGNAL PROCESSING, 2021, 161 (161)
  • [9] Improved Dynamic Mode Decomposition and Its Application to Fault Diagnosis of Rolling Bearing
    Dang, Zhang
    Lv, Yong
    Li, Yourong
    Wei, Guoqian
    SENSORS, 2018, 18 (06)
  • [10] Enhanced Singular Spectrum Decomposition and Its Application to Rolling Bearing Fault Diagnosis
    Pang, Bin
    Tang, Guiji
    Tian, Tian
    IEEE ACCESS, 2019, 7 : 87769 - 87782