Super module amenability of inverse semigroup algebras

被引:7
|
作者
Bami, M. Lashkarizadeh [1 ]
Valaei, M. [1 ]
Amini, M. [2 ,3 ]
机构
[1] Univ Isfahan, Dept Math, Esfahan, Iran
[2] Tarbiat Modares Univ, Fac Math Sci, Dept Math, Tehran 14115134, Iran
[3] Inst Res Fundamental Sci IPM, Sch Math, Tehran 193955746, Iran
关键词
Module Arense regular; Module biprojective; Module derivation; Super module amenable;
D O I
10.1007/s00233-012-9432-0
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper we compare the notions of super amenability and super module amenability of Banach algebras, which are Banach modules over another Banach algebra with compatible actions. We find conditions for the two notions to be equivalent. In particular, we study arbitrary module actions of l (1)(E (S) ) on l (1)(S) for an inverse semigroup S with the set of idempotents E (S) and show that under certain conditions, l (1)(S) is super module amenable if and only if S is finite. We also study the super module amenability of l (1)(S)(auau) and module biprojectivity of l (1)(S), for arbitrary actions.
引用
收藏
页码:279 / 288
页数:10
相关论文
共 50 条