An Explicit Formula for the Monogenic Szego Kernel Function on 3D Spheroids

被引:1
|
作者
Georgiev, S. [1 ]
Morais, J. [2 ]
机构
[1] Univ Sofia, Dept Differential Equat, Sofia, Bulgaria
[2] Univ Aveiro, Dept Math, Ctr Res & Dev Math & Applicat, Aveiro, Portugal
关键词
Quaternion analysis; prolate spheroidal harmonics; Ferrer's associated Legendre functions; Chebyshev polynomials; hyperbolic functions; Moisil-Theodoresco system; monogenic functions; Szego kernel function;
D O I
10.1063/1.4756120
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Complete orthogonal systems of monogenic polynomials over 3D prolate spheroids have been previously introduced and shown to have some important properties. In particular, the underlying functions take on values in the quaternion algebra (identified with R-4), and are nullsolutions of the well known Moisil-Theodoresco system. In this paper we introduce a new complete orthogonal system of monogenic polynomials as solutions of this system for the space exterior to 3D prolate spheroids. Additionally, we show how monogenic polynomials for the interior and exterior of a spheroid look like once their values on the surface are prescribed. With the help of these polynomials an explicit expression of the monogenic Szego kernel function over the surface of 3D spheroids is given.
引用
收藏
页码:292 / 295
页数:4
相关论文
共 50 条
  • [1] Generalized holomorphic Szego kernel in 3D spheroids
    Morais, J.
    Kou, K. I.
    Sproessig, W.
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2013, 65 (04) : 576 - 588
  • [2] An Explicit Formula of Cauchy-Szego Kernel for Quaternionic Siegel Upper Half Space and Applications
    Chang, Der-Chen
    Xuan Thinh Duong
    Li, Ji
    Wang, Wei
    Wu, Qingyan
    INDIANA UNIVERSITY MATHEMATICS JOURNAL, 2021, 70 (06) : 2451 - 2477
  • [3] 3D deformations by means of monogenic functions
    Morais, J.
    Ferreira, M.
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2013, 36 (07) : 780 - 793
  • [4] 3D formula for Success
    Anon
    Design Engineering (London), 2002, (SEP.):
  • [5] 3D Spheroids Propel Tumor Characterization
    Li, Shengli
    Zhang, Zhao
    Han, Leng
    TRENDS IN CANCER, 2020, 6 (08): : 622 - 624
  • [6] Magnetic nanomaterials for 3D spheroids formation
    Rozhina, E. V.
    Danilushkina, A. A.
    Batasheva, S. N.
    Kamalieva, R. F.
    Gomzikova, M.
    Naumenko, E. A.
    Fakhrullin, R. F.
    HUMAN GENE THERAPY, 2018, 29 (12) : A35 - A35
  • [7] PERFUSION DEVICE FOR 3D GASTROINTESTINAL SPHEROIDS
    Dogan, Asli Aybike
    Jonsson, Alexander
    Gurbuz, Hakan
    Duvfa, Martin
    TISSUE ENGINEERING PART A, 2023, 29 (11-12) : 1289 - 1289
  • [8] A planar impedance sensor for 3D spheroids
    Curto, V. F.
    Ferro, M. P.
    Mariani, F.
    Scavetta, E.
    Owens, R. M.
    LAB ON A CHIP, 2018, 18 (06) : 933 - 943
  • [9] Enabling 3D hepatocyte spheroids for microphysiometry
    Eggert, S.
    Alexander, F. A., Jr.
    Wiest, J.
    2017 39TH ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY (EMBC), 2017, : 1617 - 1620
  • [10] PRIMARY HUMAN HEPATOCYTE 3D SPHEROIDS FOR STUDYING HEPATIC FUNCTION AND DRUG METABOLISM
    Lahiri, Sujoy
    Tritapoe, Julia
    Comstock, Kate
    Nguyen, Theresa
    Tieberg, Deborah
    Kuninger, David
    DRUG METABOLISM AND PHARMACOKINETICS, 2020, 35 (01) : S56 - S56